Bauer 3076 型油流量试验台可对各种飞机变速箱、热交换器和其他油附件进行测试,完全符合 OEM 组件测试程序。试验台配有一个油供应泵,能够在高达 500 PSIG 的压力下输送高达 50 GPM 的 MIL-L-23699 油,温度控制在 70°F 至 280°F 之间。Bauer 油流量试验台设计用于方便的手动操作。机械升降装置可轻松定位组件和固定装置。Bauer 提供独立的油蒸气再循环提取系统,帮助为试验台操作员保持清洁健康的工作环境。
本文解决了石蜡矿床的问题,特别关注预防化学方法。在高能油生产中使用的抑制剂的有效性取决于其注入点,因此需要将试剂更深入地放置在“油储层孔”系统中。这项研究的目的是开发一种用于长期蜡抑制的方法,并通过实验评估井操作参数对抑制剂释放速率中生产液的影响。文章概述了一种石蜡抑制技术,该技术涉及将固体多孔颗粒注射到液压裂缝中,该骨折具有双重目的,既可以作为proppant和抑制剂来源。已经开发了一种方法,该方法是用固体乙烯 - 乙酸乙烯酯(EVA)饱和的多孔陶瓷颗粒,该方法在被油洗涤时逐渐释放到油流中,起作用,作为抑郁剂。过滤实验表明,这种抑制方法将抑制剂长期释放到油流中。即使过滤470孔量,通过模型支撑盒过滤的机油样品中的EVA含量仍保持在最小有效浓度水平上。从而减少了旨在防止和去除“石油储层”系统中的石蜡沉积物的干预频率。
摘要:通常用狭窄油通道的牵引力变压器使用ODAF或“定向空气强制的油”方法冷却,在该方法中,其温度在很大程度上取决于绕组的焦油热量,变压器中的共轭热传递,以及通过油冷却器的二次热量释放,以及油泵产生的油液液泵。既不有资格预测这种类型的变压器中的时间和空间温度变化,均未获得热 - 电动类比和CFD模拟方法。 在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。 然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。 另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。 最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。均未获得热 - 电动类比和CFD模拟方法。在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。
一旦可用,可以使用来自外部来源的“辅助数据”(例如eurocontrol)通过整洁。在这种情况下,只有飞行信息(例如呼号符号)由飞机操作员进行检查,以确保实际飞行的实际航班和整齐的呼叫标志之间的一致性。整洁的二级数据还包括4D飞行轨迹数据,来自外部来源的天气数据以及在燃料,发动机和飞机属性等特定数据集上的保守默认值。飞机运营商可能希望提供自己的数据,并用燃油流,飞机属性和发动机识别的更精确值替换默认值,这些值是从全年监控或其他来源监控的自己的跟踪系统中得出的。以后,我们称飞机运营商提供了“主要数据”的数据。
源水泵从海中抽水,然后通过注入井注入油藏。由于水的密度大于油,它占据油藏的底部,填补了被抽走的油留下的空隙,同时也迫使剩余的油流向地面以便回收。该系统对于良好的石油生产至关重要。纯海水具有许多不适合注入油藏的特性,因此水需要经过多个处理阶段。正是这种处理给本质上无害的海水系统带来了许多必须解决的危害。注入油藏的悬浮固体会堵塞岩石中的孔隙,导致石油回收问题。将凝结剂化学品添加到水中,然后过滤器去除固体颗粒。海水中的溶解氧是其高腐蚀性的主要原因。使用真空接触塔和除氧化学品来降低浓度。
2010 年,Sorgic 和 Radakovic [8] 对浸没在矿物油中的变压器进行了二维模拟,以将冷却系统与油驱动和强制油配置进行比较。2012 年,Tsili 等人建立了一种方法来开发三维模型并预测热点的温度 [9]。这一年,Skillen 等人对一个不对称非等温流二维模型进行了 CFD 模拟,以表征具有锯齿形冷却的变压器绕组中的油流 [10]。2014 年,Yatsevsky 对浸没在自然对流油中的变压器进行了二维模拟,包括铁心、油箱和散热器,以预测热点。所开发的模型表现出良好的性能,并通过实验进行了验证 [11]。最近,Torriano 等人在一种采用自然对流冷却(ON)的比例盘式电力变压器中开发了三维传热模型 [12]。
黄油含量(又称矩形)是一个循环图案1,在图形分析中至关重要。尤其是,在两部分图上[41,61,3,97]上,But-Ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-terlif y [78,80,77,76],可以将顶点分为两个不相交组,并且仅在两组Vertices之间进行边缘。考虑图G =(v,e),其中v和e分别是ver和边缘的集合。黄油粉计数的问题是计算G中的黄油含量总数。黄油流数在许多应用中起着重要的作用,例如垃圾邮件检测[19,81,82],推荐系统[70],单词文献集群[16],研究小组识别[15],并根据传输理论[11]链接前词典。最近,Lyu等。[46]在电子商务的欺诈检测场景中,将黄油计算到修剪的顶点。
轴 (1) 通过十字盘联轴器 (2) 将驱动扭矩无轴向力地传输到星形气缸体 (3)。气缸体由控制轴颈 (4) 静压支撑。气缸体中的径向活塞 (5) 通过静压平衡的滑靴 (6) 抵靠冲程环 (7)。活塞和滑靴通过球窝接头和锁紧环连接。滑靴由两个挡圈 (8) 引导进入冲程环,运行时通过离心力和油压抵靠在冲程环上。当气缸体旋转时,活塞由于冲程环的偏心定位而往复运动,活塞冲程是偏心距的两倍。偏心率由泵壳体内两个相对的控制活塞 (9、10) 改变。进出泵的油流通过泵端口,并通过控制轴颈中的端口进出活塞。这是通过控制轴颈中的进气口和压力缝隙来控制的。补偿器 (11) 监控系统压力和冲程环位置 (输送)。液压力不由滚柱轴承支撑。因此轴承在很大程度上不受负载。
进行了风洞试验,以表征 RAE 2822 超临界翼型并实施主动流动控制技术。试验在各种亚音速和跨音速马赫数和攻角下进行。沿四分之一弦轴连接到翼型端部的两个称重传感器用于量化作用在翼型上的气动力。跨音速翼型已集成,控制技术已在佛罗里达州立大学 Polysonic 风洞中成功实施。本文介绍了一些初步实验结果,并描述了实施过程中获得的经验教训。油流可视化显示翼型吸力面上存在角涡,下表面存在楔形图案,这表明局部过渡流和湍流区域的组合,没有冲击或冲击非常弱。基准翼型上测量的升力系数远低于基于文献的估计值。这些结果表明,测试的翼型需要修改其纵横比和横截面积以适应设施。基于同流喷射的主动流动控制技术在改善气动性能方面显示出良好的前景。