摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介
1. 药品名称 人畜共患流感疫苗 Seqirus 预充注射器注射悬浮液 人畜共患流感疫苗 (H5N8)(表面抗原,灭活,佐剂) 2. 定性和定量组成 流感病毒表面抗原(血凝素和神经氨酸酶)* 来自谱系:A/Astrakhan/3212/2020 N8 型菌株 (CBER-RG8A)(进化枝 2.3.4.4b) 每 0.5 毫升剂量 7.5 微克** * 在健康鸡群的受精鸡蛋中繁殖 ** 以血凝素 (HA) 微克表示。佐剂MF59C.1每0.5ml剂量含:角鲨烯(9.75mg)、聚山梨醇酯80(1.175mg)、山梨醇三油酸酯(1.175mg)、柠檬酸钠(0.66mg)和柠檬酸(0.04mg)。人畜共患流感疫苗 Seqirus 可能含有微量的鸡蛋和鸡蛋白、卵清蛋白、卡那霉素、硫酸新霉素、甲醛、氢化可的松和十六烷基三甲基溴化铵,这些物质在制造过程中使用(见 4.3 节)。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物剂型 注射混悬液(注射剂)。疫苗是乳白色的液体。 4. 临床信息 4.1 治疗指征 人畜共患流感疫苗 Seqirus H5N8 适用于 18 岁及以上的成年人对 H5 亚型甲型流感病毒进行主动免疫(见 4.4 和 5.1 节)。该疫苗的使用必须符合官方建议。 4.2 用法用量 用法用量 成人和老年人(18 岁及以上):人畜共患流感疫苗 Seqirus H5N8 以肌肉注射方式给药,每剂 0.5 毫升,共 2 剂。第二剂应在第一剂给药三周后给药。儿童人群人畜共患流感疫苗 Seqirus H5N8 对 18 岁以下个体的安全性和有效性尚未确定。
豆科作物对全球粮食安全和可持续农业至关重要,它们提供必需的植物蛋白质和氨基酸,同时通过共生固氮作用提高土壤肥力。尽管豆科作物具有营养和生态意义,但它们的生产仍面临诸多挑战,包括产量低、易受生物和非生物胁迫以及气候变化对水和土地资源的影响。解决这些问题需要创新的解决方案,将传统育种与尖端生物技术方法相结合。豆科作物改良的最新进展是通过现代育种和基因组编辑技术实现的,例如 CRISPR/Cas9、TALEN 和 ZFN,这些技术可以进行精确修改,以提高农艺性状的适用性和遗传潜力。尤其是 CRISPR/Cas9,它已成为豆科育种的有力工具,可促进靶向突变、基因敲除和基因表达调控。该综述讨论了其在包括大豆、豇豆、鹰嘴豆和花生在内的各种豆科植物中的应用,以改善性状,例如,CRISPR/Cas9 已被用于增加花生中的油酸含量并改善大豆的光周期开花。农杆菌介导方法和基因枪技术等转化方案的进步以及组织培养和表型分析技术的改进正在帮助克服这些挑战。尽管取得了重大进展,但豆科植物转化和再生方面的挑战仍然存在,但组织培养方案和高通量表型分析的最新改进提高了这些基因组编辑技术的效率。它还探讨了将基因组编辑技术与传统育种计划相结合以加速遗传增益和开发生物强化、气候适应性强的豆科植物品种的潜力。通过利用豆科植物中广泛的遗传多样性并采用先进的基因组学工具,研究人员可以创造不仅产量高而且营养丰富且环境可持续的作物。将基因组编辑技术与传统育种相结合,为开发高产、营养丰富、气候适应性强的豆科植物品种铺平了道路。关键词:豆科植物;生物技术;基因组编辑;CRISPR/Cas9;农杆菌介导
IN VITRO PROTECTIVE EFFECT OF TELFAIRAI OCCIDENTALIS (FLUTED PUMPKIN) LEAVES AGAINST OXIDATIVE DNA DAMAGE INDUCED BY REACTIVE OXYGEN SPECIES BASSA Obed Yakubu*, Abdulkadir Sayyadi, Suleiman Rabiatu Bako, Adejoh Sarah Ufedu, Rilwanu Zainab Julde, Abdulkarim Anisa Garba Department of Biochemistry, Zaria Ahmadu Bello大学生命科学学院 *通讯作者电子邮件地址:obedbassa@gmail.com或obedbassa@abu.edu.edu.ng电话:+2348065111379抽象氧化DNA损伤是导致细胞代谢产生细胞代谢产生的细胞代谢的不可避免的后果。telfairai Occidentalis是在西非种植的蔬菜及其可食用种子的热带藤蔓。这项研究旨在评估西方西氏菌叶提取物的体外保护作用,以针对芬顿系统引起的DNA损伤。T. t. costidentalis叶子;水,N-丁醇(N-BuOH)和乙酸乙酯(ETOAC)。PVAX质粒DNA(476 ng)与Fenton的系统(FESO 4/H 2 O 2)一起在37°C下30分钟内孵育30分钟,同时却没有提取物。在0.8%琼脂糖凝胶中分析孵育。乙酸乙酯和丁醇提取物进行GC-MS分析。西方叶链球菌叶提取物的保护作用表现出有效的保护活性,以抗氧化应激诱导的DNA损伤,并且剂量依赖于较高剂量,最高剂量是最保护的。油酸和3-羟基苯甲酸很可能分别是丁醇和乙酸乙酯提取物的生物活性成分。关键字:反应性氧,DNA损伤,telfairai concidentalis引入正常生理事件期间产生的活性氧(ROS)是造成细胞和分子损伤的重要因素,并与脂质,蛋白质,蛋白质和核酸等生物分子相互作用,导致氧化损伤。ROS最大的作用之一是对DNA的氧化损害,这可能导致致癌,诱变和其他退行性疾病,例如癌症和神经退行性疾病。减轻ROS对生物系统的影响并保护DNA免受氧化损伤已成为预防相关疾病的重要重点(Chaudhary等人
摘要:功能性Ni/Ni 3 C纳米颗粒的合成引起了重大的兴趣,尤其是在电催化领域,在这些领域中,这些有希望的纳米颗粒被用来开发成熟的电催化剂,尤其是通过氢进化反应而用于氢生产的氢。但是,这些系统的显着反应性使它们容易降解,从而损害了它们的催化剂性能。探索以减轻此问题的一种解决方案涉及碳纳米结构的催化生长,以封装和保护这些纳米颗粒。从纳米颗粒形成碳纳米结构的机制仍然是本研究的主题。在报道的过程中,纳米催化剂的退火已被描述为生产此类系统的高效方法。此过程受纳米催化剂的温度,大气以及结构和形态特征等参数的影响。在此处报道的工作中,我们评估了不同配体对(油胺/油酸和油胺/棕榈仁油)对Ni/Ni 3 C纳米颗粒的结构,形态和磁性能的影响。此外,我们研究了退火在氮气中对这些纳米颗粒的结构特性以及碳纳米结构的生长作为保护机制的影响。分析包括传统技术,例如X射线衍射,透射电子显微镜(TEM),磁化测量值以及具有差分扫描量热法的热重分析。此外,在较大的温度范围内使用扰动的角相关光谱(PAC)进行局部分析(30-693 K),利用放射性示踪剂111在(111 CD)中进行这些测量。表征表明棕榈仁油有助于形成具有较高Ni 3 C含量,更宽的尺寸分布和较低饱和磁化的纳米颗粒。在30-50 K范围内的PAC测量以及密度功能理论计算,表明纳米粒子中没有Ni-HCP相,这是文献中经常讨论的主题。Moreover, the presence of Ni 3 C regions with carbon deficiency was identified, characterized by a quadrupole frequency ( ν Q ) of 23 MHz and a hyperfine field ( B hf ) of 1 T. The temperature-dependent local analysis, combined with thermal analysis and TEM measurements, confirmed the development of carbon nano-onions around the nanoparticles during thermal treatment above 695 K in a nitrogen atmosphere.该观察结果表明,使用这些石墨纳米结构提供了最高的Ni 3 C含量的棕榈仁油获得的纳米颗粒,可为Ni核提供了出色的封装。关键字:配体,纳米颗粒,催化,石墨化,超精细相互作用
摘要:L-天冬酰胺酶(ASP)和阿霉素(DOX)均用于白血病的治疗,包括组合。我们试图调查它们在同一目标递送工具中是否可以使这种治疗更加有效。我们组装了一个胶束系统,其中内部疏水核心装有DOX,而ASP由于静电相互作用而在表面吸收。为了使这种吸收更强,我们与肝素 - 乳酸和油酸的少精胺和诸如精子和脂质成分的寡胺结合了肝素。与游离DOX相比,单独使用DOX时,系统的细胞毒性提高了约10倍。ASP仅显示细胞毒性增加了2.5倍,因此,假设效应的添加性,当两种药物结合使用时,人们可能会预计会提高25倍。 但实际上,加载到输送系统中的ASP + DOX的组合产生了一种协同作用,具有50倍的改进与免费的单个组件。 药代动力学研究表明,血液中胶束制剂的循环延长,以及胶束形式中DOX的有效浓度的增加,DOX降低了DOX对肝脏和心脏的积累(这降低了肝毒性和心脏毒性)。 出于相同的原因,DOX的脂质体配方一直用于治疗多种类型的癌症,几乎取代了免费药物。 我们认为,将两种类型的药物结合到同一靶细胞可能是朝着改善癌症治疗中的风险 - 抗抗性比的进一步步骤。ASP仅显示细胞毒性增加了2.5倍,因此,假设效应的添加性,当两种药物结合使用时,人们可能会预计会提高25倍。但实际上,加载到输送系统中的ASP + DOX的组合产生了一种协同作用,具有50倍的改进与免费的单个组件。药代动力学研究表明,血液中胶束制剂的循环延长,以及胶束形式中DOX的有效浓度的增加,DOX降低了DOX对肝脏和心脏的积累(这降低了肝毒性和心脏毒性)。出于相同的原因,DOX的脂质体配方一直用于治疗多种类型的癌症,几乎取代了免费药物。我们认为,将两种类型的药物结合到同一靶细胞可能是朝着改善癌症治疗中的风险 - 抗抗性比的进一步步骤。
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
原始文章特级初榨橄榄油作为运动员的功能性食物:康复,健康和表演帕斯奎尔·佩罗,Stefania d'Angelo*医学,运动和福祉科学系(Dimmmeb),那不勒斯大学“ Parthenope”,Napoli University,Napoli-意大利 - 意大利 - 在线出版:2025年2月28日,2025年2月15日接受:20222年2月15日,202日,202日。 doi:10.7752/jpes.2025.02042地中海饮食的基石抽象特级初榨橄榄油因其在生物活性化合物中的丰富性,尤其是多酚,赋予了许多健康益处。这篇叙述性综述研究了橄榄油在缓解氧化应激和炎症中的作用,并特别关注其对运动员和运动表现的影响。发现橄榄油中的酚类化合物,包括羟基取,酪醇,油脂糖和油蛋白蛋白,显示出抗氧化剂,抗炎和心脏保护特性,从而使橄榄油具有潜在的饮食干预措施,以增强运动员的恢复和恢复能力。审查的研究强调了特级初榨橄榄油,其能够保护红细胞免受氧化损伤,保留心血管功能并改善肌肉恢复的能力。橄榄油补充剂还与减少氧化应激和炎症标记,有氧能力提高以及娱乐性运动员的肌肉力量增强有关。从机械上讲,其多酚已显示可调节线粒体功能,改善抗氧化酶活性,并在体育活动期间提高代谢效率。尽管有希望的证据,研究方法,剂量和人群的变异性的确定性有限。此外,当前的证据表明,尽管橄榄油可能有助于耐力和恢复,但仍需要进一步研究以确定其在不同运动学科中的特定作用。虽然橄榄油在耐力和恢复环境中表现出了潜力,但其急性性能增强效果仍然不太清楚。未来的研究应旨在标准化方案并探索补充橄榄油对多样化运动人群的长期影响。本评论强调了橄榄油作为运动营养中的自然和可持续战略的潜力,在为整体健康做出贡献的同时,支持身体绩效和恢复。关键词:红细胞,羟基取,地中海饮食,橄榄油,氧化应激,多酚,活性氧。引言橄榄油是几个世纪以来地中海饮食的基石,是对人类健康的有益影响最广泛的食物之一。尤其是特级初榨橄榄油(EVOO),最纯净,最不精致的形式,其养分和生物活性化合物的含量高,可提供广泛的健康益处(Boskou&Clodoveo,2020; Tian,Bai,Bai,Tian,&Zhao,2023)。是减少心血管疾病风险,防止癌症的保护以及细胞衰老过程的减慢(Ditano-Vázquez等,2019;Farràs等,2021)。这些特性主要归因于苯酚和多酚的存在,有效抵消氧化应激(OS)的强大抗氧化剂(OS),细胞衰变的关键因素以及慢性疾病的发作(Manna等,2002; Serreli&Deiana; Serreli&Deiana,2020; D'Angellino,2009; Boccellino&boccellino&boccellino&boccellino&boccellino&boccellino&boccellino&boccellino&d'BAccellino&boccellino&d'Boccellino&boccellino&d'BAcceLino&d'Boccellino&boccellino; Al。,2021)。evoo源自橄榄的压力,其特征是高浓度的单不饱和脂肪酸,而油酸则包括其总成分的55-83%。单不饱和脂肪酸与许多心血管益处有关,包括降低LDL(低密度脂蛋白)胆固醇水平(Schwingshackl&Hoffmann,2012)。然而,EVOO的独特价值在于其酚类化合物,例如羟基取(HT),酪醇(Tyr),油果(Oleocanthal(Olc)(OLC)和Oleuropein(Ole)。尽管这些化合物占其组成的一小部分,但由于其抗氧化剂,抗炎和生物学特性,它们起着至关重要的作用,与复杂的分子机制相互作用以调节OS和炎症反应(D'Angelo等,2020a)。OS(Sies,2015)。ROS的积累会损害DNA,蛋白质和脂质,加速细胞衰老并促进慢性疾病的发展(Halliwell,2022年)。细胞衰老是一种复杂的现象,涉及细胞对环境刺激的反应能力的逐渐下降(Li等,2023)。这种现象对高度敏感的细胞(例如红细胞(RBC))特别有害,该细胞在氧气转运和去除碳二氧化碳中起着至关重要的作用