新南威尔士大学堪培拉分校在 M2 编队飞行立方体卫星任务上开展了一项实验计划,旨在为可用的空间态势感知 (SSA) 传感器和建模算法提供真实数据。本文概述了在任务的早期、主要和扩展运行阶段计划的实验和部署计划,这些计划为 SSA 观测提供了机会。该任务包括 2x6U 立方体卫星。每颗卫星都使用 3 轴姿态控制系统,利用航天器之间的大气阻力差来控制沿轨道编队。差动气动编队控制使卫星能够保持在可接受的沿轨道偏移范围内,以执行主要任务实验。在整个任务过程中,有几个重要的机会来收集基准 SSA 数据。立方体卫星对最初被连接成 12U 卫星,按照新南威尔士大学堪培拉分校地面站的预定命令,它们将被弹簧沿轨道方向推开,形成 2x6U 卫星编队。航天器分离,随后展开太阳能电池板和天线,标志着在早期运行阶段,配置、雷达截面和轨道发生了重大变化。太阳能电池板的展开将航天器的最大正面面积从收起配置时的 0.043 平方米增加到完全展开时的 0.293 平方米。航天器的姿态将受到控制,以通过差动气动阻力的作用阻止航天器的沿轨分离。卫星具有 GPS 和姿态确定与控制功能,可提供精确的时间、位置、速度和姿态信息,这些信息通常可在卫星遥测中获得。
跨越24年的数据记录呈现出全球大气总气溶胶光学深度以及由于精细模式成分而引起的气溶胶光学深度,通常是人为起源。通过一系列双视卫星仪器以大约1公里的分辨率提供了反射率的原始测量值:沿轨道扫描辐射计2(ATSR-2),沿轨道扫描辐射计(AATSR),以及海洋和海洋和地表温度计(SLSTRS)(SLSTRS)。这些处理以10公里的分辨率检索气溶胶性能,然后在每天和每月的时间表上在1°×1°纬度宽度网格上进行整理。检索是根据气溶胶机器人网络和海上气溶胶网络的地面日晒测量值进行评估的,并将其与其他卫星衍生的数据集进行了比较。数据记录对直接限制地球的辐射预算有影响,从而使模型的基准测试和改进以代表气候系统中的气溶胶,空气质量监测并增加了与火灾,尘埃和硫酸盐污染相关的发射趋势的长期记录。发布后,SLSTR数据集将定期扩展。
参数 ATMS Bowie 覆盖范围 (km) 30 25 HPBW 2.2 1.7 总扫描时间 (s) 2.67 2.52 RPM 22.47 23.97 恒定扫描速率 (°/秒) 134.83 143.88 角度测量范围 (°) 106.56 103.75 地球视场 沿轨道样本/IFOV 1.6 1-1.5 跨轨道样本/IFOV 1.98 1-1.5 样本 96 122 测量时间 (s) 0.79 0.72 积分时间 (ms) 8.23 5.91 注意:以上假设 ATMS 具有恒定扫描速率。可变扫描速率将 ATMS 积分时间增加到 18 ms。
,我们专注于冰片遥感中心收集的雪雷达[1]数据集,作为NASA操作Icebridge的一部分。雪雷达从2-8 GHz运行,并且能够在冰盖较大区域的较高区域的冰层中跟踪冰层。传感器连续几年产生历史降雪堆积的二维灰度,其中水平轴代表沿轨道方向,而垂直轴代表层层深度。像素亮度与返回信号的强度成正比。代表表面层的像素通常由于较高的反射和降雪密度变化而更明亮且更明确,而代表更深层的像素通常由于密度和较低的回流 - 信号强度而较深,更嘈杂。在我们的实验中,我们在2012年使用了从格陵兰岛选定的雪雷达弹射线的雷达数据。在许多区域,每个冰层代表一年一度的等铁[2]。因此,我们可以在相应的一年之前指定的冰层。
摘要— 先进星载热辐射和反射辐射计 (ASTER) 是由日本东京国际贸易和工业部 (MITI) 提供的研究设施仪器,将于 1998 年发射到 NASA 的地球观测系统早晨 (EOS-AM1) 平台上。ASTER 在可见近红外 (VNIR) 中有三个光谱波段,在短波红外 (SWIR) 中有三个波段,在热红外 (TIR) 区域有五个波段,地面分辨率分别为 15 米、30 米和 90 米。VNIR 子系统有一个后视波段,用于沿轨道方向的立体观测。由于数据将具有广泛的光谱覆盖范围和相对较高的空间分辨率,我们将能够区分各种表面材料并减少由混合像素导致的一些低分辨率数据中的问题。 ASTER 将首次提供高空间分辨率的轨道多光谱热红外数据以及所有 EOS-AM1 仪器中空间分辨率最高的表面光谱反射温度和发射率数据。ASTER 任务的主要科学目标是提高对发生在地球表面和低层大气上或附近的局部和区域尺度过程的理解,包括地表-大气相互作用。科学调查的具体领域包括:1) 陆地表面气候学;2) 植被和生态系统动态;3) 火山监测;4) 灾害监测;5) 大气
美国宇航局计划在 2024 年之前将人类送回月球 [1]。这引发了人们对月球探索任务的兴趣。为了有效地将人类和机器人任务送上月球,正在研究不同的最佳低和/或高推力轨道转移。最简单、最快速但不节能的方法是霍曼转移 [2]。霍曼转移需要两次燃烧,一次在轨道的近地点,另一次在远地点。航天器在地球停泊轨道上时位于近地点,远地点设置在所需的月球轨道高度。另一种研究航天器从地球到月球的转移的方法是使用拼块圆锥曲线法。拼块圆锥曲线近似依赖于太阳系动力学的开普勒分解 [3]。通过沿轨道小心地切换 SOI(影响球),航天器的运动在给定时间内仅受一个主要天体控制。例如,在使用补片圆锥曲线进行地球到月球转移的情况下,航天器在转移的大部分时间里将位于地球的 SOI 中,而在最后的时间里只靠近月球。霍曼转移和补片圆锥曲线都是 2BP(二体问题)中简单、直接的转移方法。从 1960 年代到 1980 年代,包括月球和阿波罗任务在内的所有登月任务都使用了一些对霍曼和补片圆锥曲线转移的改动。2BP 向月球的转移受到发射窗口的限制,并且需要多次修正燃烧,从而增加了总 Δ𝑉 成本。以阿波罗 11 号为例,它必须进行两次月球轨道交叉燃烧和四次中途修正。阿波罗 11 号进入月球轨道所需的总 Δ𝑉 为 13571.1 ft/s(4.136 km/s)[4]。