在这项工作中,我们对我们称为泊松层的印度bu效过程进行了全面的贝叶斯后验分析,该过程旨在用于复杂的随机稀疏计数物种采样模型,该模型允许跨组内和内部共享信息。此分析涵盖了可能有限数量的物种和未知参数,在贝叶斯机器学习环境中,我们能够随着更多信息的采样而学习。为了实现我们的结合结果,我们采用了一系列从贝叶斯潜在特征模型,随机占用模型和偏移理论中汲取的方法。尽管有这种复杂性,但我们的目标是使从业人员(包括那些可能不熟悉这些领域的人)可以访问我们的发现。为了促进理解,我们采用了一种伪式风格,强调清晰度和实用性。我们的目标是用一种与微生物组和生态学专家产生共鸣的语言来表达自己的发现,以解决建模能力的差距,同时承认我们不是这些领域中的专家。这种方法鼓励将我们的模型用作域专家采用的更复杂框架的基本组成部分,从而体现了Dirichlet过程中开创性工作的精神。最终,我们对后验分析不仅会产生可进行的计算程序,而且还可以实现实际的统计实施,并在微生物组分析中为相关数量提供了明确的映射。
本研究探讨了在降雨模型中使用分数泊松和分数伽马模型的好处,突出了它们在处理零膨胀数据,减少过度分散并提供更大的灵活性和准确性和准确性方面的优势。这项研究的第二部分研究了海洋生态系统与全球气候变化之间的动态相互作用。它专注于浮游植物在氧气产生中的作用以及变暖水对这种微妙平衡的影响。通过采用整合微分方程和布朗运动的数学模型,该研究提供了一个全面的框架,以了解不同的氧气产量如何影响海洋生态系统的可持续性。最后,该研究将小部分的布朗运动纳入建模浮游生物 - 氧气动力学,以解决传统布朗运动的局限性。此方法捕获远程
Apr 1, 2024 — 新松机器人自动化股份有限公司(新松本部). SIASUN Robot & Automation Co., LTD.(SIASUN HQ). 沉阳新松半导体设备有限公司. Shenyang SIASUN Microelectronics Equipment ...
有效的计算或Levenshtein distance是一种用于评估序列相似性的普遍指标,随着DNA存储和其他生物学应用的出现,引起了显着的关注。序列嵌入将Levenshtein的距离映射到嵌入向量之间的调用距离,已成为一种有前途的解决方案。在本文中,提出了一种基于泊松再生的新型基于神经网络的序列嵌入技术。我们首先提供了对嵌入维度对模型性能的影响的理论分析,并提出了选择适当的嵌入性识别的标准。在此嵌入维度下,通过假设托管式分离后的固定长度序列之间的levenshtein距离来引入泊松式,这自然与左环特链距离的定义相一致。此外,从嵌入距离的分布的角度来看,泊松回归大约是卡方分布的负面对数可能性,并在消除偏度方面提供了进步。通过对实际DNA存储数据的全面实验,我们证明了与最新方法相比,采用方法的出色性能。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
摘要:在单光子水平上修改光场是即将到来的量子技术面临的一个关键挑战,可以通过集成量子光子学以可扩展的方式实现。激光写入的金刚石光子学提供了与光纤技术相匹配的 3D 制造能力和大模场直径,尽管限制了单发射器级别的协同性。为了实现大的耦合效率,我们将通过高数值孔径光学器件激发单个浅植入硅空位中心与激光写入 II 型波导辅助检测相结合。我们展示了单发射器消光测量,协同率为 0.0050,相对 beta 因子为 13%。共振光子的传输揭示了从准相干场中减去单光子,从而产生超泊松光统计。尽管内在的协同性很低,但我们的架构使光场工程能够在单量子水平上进行集成设计。激光写入结构可以三维制造,并与光纤阵列具有自然连接性。关键词:激光写入、光子工程、集成量子光学、金刚石色心、量子发射器■ 简介
一项 II 期开放标签研究(VISION;关键队列 A 中的 N = 151)评估了特泊替尼对携带 MET ex14 跳跃突变的局部晚期或转移性 NSCLC 成人患者的疗效和安全性;然而,由于这项描述性研究的单臂设计且缺乏稳健的统计检验,因此尚不清楚特泊替尼治疗是否比任何相关的治疗对照剂带来额外的临床益处。此外,pERC 指出,由于后期治疗周期的样本量减少、特泊替尼的开放标签给药以及缺乏对照组,VISION 试验的健康相关生活质量 (HRQoL) 数据存在不确定性。因此,与目前可用的治疗方法相比,特泊替尼对 HRQoL 的影响仍然未知。申办方提交的间接证据将 VISION 试验的 A 组患者与接受其他可用疗法治疗的患者进行了比较,但由于重要的方法学问题和多种偏见来源,pERC 无法得出结论,即与免疫疗法、化疗和化学免疫疗法相比,特泊替尼治疗在无进展生存期 (PFS) 或总生存期 (OS) 方面具有额外的临床益处。此外,在间接治疗比较 (ITC) 中没有关于 HRQoL 或危害的比较证据。考虑到所有证据,pERC 得出结论,对于携带 MET ex14 跳跃突变的局部晚期或转移性 NSCLC 患者,与 NSCLC 标准治疗相比,特泊替尼治疗益处的临床意义存在高度不确定性。
图 3:检测效率和死时间引起的入射光子统计数据失真。具有泊松统计数据 Poisson( k | µT ) 的入射状态,µT = 80(实心方块),由于有限量子效率 η = 0 . 7(空心方块)而有效衰减,见公式 (10)。输出分布保持为泊松分布,具有泊松( m | ηµT )。对于具有可瘫痪死时间 t dead 的探测器,输出统计数据由公式控制。 (11)给出分布泊松(k | ηµT exp(−ηµt dead)),即它仍然保持泊松分布,新的均值为ηµT exp(−ηµt dead)(实心圆)。对于具有非瘫痪死时间t dead 的探测器,输出分布不再是泊松分布,而是亚泊松分布,参见公式(13)(空心圆)。