积累的证据表明,肠道微生物营养不良与进行性慢性肾脏疾病(CKD)相互作用。但是,没有可用的治疗可有效抑制进行性CKD。Here, using microbiomics in 480 participants including healthy controls and patients with stage 1 – 5 CKD, we identi fi ed an elongation taxonomic chain Bacilli-Lactobacillales-Lactobacillaceae- Lactobacillus - Lactobacillus johnsonii correlated with patients with CKD progression, whose abundance strongly correlated with clinical kidney markers.L. johnsonii的丰度与腺嘌呤诱导的CKD大鼠的进行性CKD降低。L. johnsonii补充改善了肾脏病变。血清吲哚-3-醛(IALLD),其水平与CKD大鼠的肌酐水平密切相关,使用单侧输尿管障碍物(UUO)和5/6肾切除术(NX)以及晚期CKD患者以及晚期CKD患者诱导的大鼠血清中降低。用IALLD通过抑制CKD或UUO大鼠的芳基烃受体(AHR)信号以及培养的1-羟基氧基诱导的HK-2细胞在大鼠中通过抑制芳基碳氢化合物受体(AHR)信号来处理肾脏病变。在AHR缺乏症小鼠和HK-2细胞中,IALLD的重新保护作用部分降低。我们的进一步数据表明,约翰逊氏乳杆菌的治疗通过增加血清IALLD水平来抑制AHR信号,从而减弱肾脏病变。兼而有之,针对约翰逊氏菌可能会逆转CKD患者。这项研究对微生物产生的色氨酸代谢如何影响宿主疾病有了更深入的了解,并发现了CKD患者预防性和治疗性治疗的潜在途径。
二甲双胍是全球糖尿病治疗糖尿病治疗的最常见的口服抗血糖药,被认为是美国糖尿病协会和欧洲糖尿病研究协会的新诊断为2型2型糖尿病的第一线治疗(1)。拥有超过60年的实际全球临床经验,二甲双胍通常被认为是有效且安全的,除非有禁忌症(2,3)。二甲双胍相关的乳酸性酸中毒(MALA)是二甲双胍的一种罕见但严重的不良影响,估计每10万名患者年度暴露率<10事件,死亡率为30%-50%(4)。MALA通常由于肾功能受损而导致的二甲双胍积累沉淀(4)。相比之下,急性酒精中毒与肝乳酸清除受损有关,这可能会增加乳酸酸中毒的风险(5)。但是,由于MALA在肾功能正常的患者中极为罕见(6),因此尚不清楚酒精引起的MALA的详细临床图片。我们在这里报告了肾功能正常的患者中酒精诱导的MALA病例。此外,我们描述了临床图片并讨论
催乳素(PRL)受体(PRLR)基因在各个大脑区域表达,最高水平存在于脉络丛中,这是受体介导的PRL从血液到脑脊液流动的转运的位点。我们研究了PRL在鼠脉络丛中PRL基因表达的调节机制。我们首先研究了鼠Prlr基因中替代的第一个外显子的组织。除了三个已知的第一个外显子ME1 1,ME1 2和ME1 3,两个第一个外显子ME1 4和ME1 5还被cDNA克隆新近识别。PRLR mRNA的每个第一个外显子变体都表现出组织或通用表达。在小鼠的脉络丛中,与二肌小鼠中的小鼠相比,泌乳小鼠中ME1 3-,ME1 4-和ME1 5 -PRLR mRNA的表达水平增加。此外,与PRL差异(PRL c / c和prl c / k)小鼠相比,PRL(PRL K / K)小鼠的ME1 4-PRLR mRNA的表达水平降低。在卵巢切除的PRL K / K小鼠中,PRL给药的ME1 4 -PRLR mRNA的表达水平显着增加,但通过17 B-雌二醇给药。PRLR mRNA的最后两个外显子变体的表达水平,编码PRLR的长和短细胞质区域,在泌乳小鼠中也升高,并在PRL K / K小鼠中降低。这些发现表明,PRL通过ME1 4前外显子的转录激活刺激PRLR基因的表达,从而导致鼠脉络膜丛中PRLR mRNA的长形和短形式变体的增加。
微量营养素对大脑连通性的影响尚不完全理解。分析全球人群中的人奶样品,我们确定碳环糖糖肌醇 - 肌醇是促进大脑发育的组成部分。我们确定在早期泌乳期间,当神经元连接迅速形成婴儿大脑时,它在人乳中最丰富。肌醇 - 肌醇促进了人类兴奋性神经元和培养的大鼠神经元的突触丰度,并以剂量依赖性的方式起作用。从机械上讲,肌醇 - 肌醇增强了神经元对诱导突触的透射性相互作用反应的能力。在小鼠中测试了肌醇 - 肌醇在开发大脑中的作用,其饮食补充剂扩大了成熟皮层中的兴奋性后突触部位。利用器官型切片培养系统,我们还确定肌醇 - 肌醇在成熟的脑组织中具有生物活性,并用这种碳环糖糖处理器官型切片增加了突触后特殊性和兴奋性突触密度的数量和大小。这项研究促进了我们对人类乳对婴儿大脑的影响的理解,并将肌醇 - 肌醇鉴定为促进神经元连接形成的母乳成分。
再生医学是一个多学科领域,它可以帮助组织和器官的结构和功能。由于它们能够迁移到损伤部位并通过旁分泌因子促进组织再生(分泌组),因此中胞囊干细胞已成为此类研究中使用最广泛的干细胞类型[1-3]。然而,目标组织内的细胞定位不足和低细胞存活率的问题使MSC的吸引力降低。最近,由于旁分泌因素在克服了MSC的局限性方面引起了越来越多的兴趣。细胞外囊泡(EV),包括外泌体,是参与胞内通信和贩运的最重要的旁分泌效应子之一[4]。外泌体是脂质双层囊泡,直径范围为30至200 nm,可以通过表面
摘要:膀胱癌(BC)是一种异质性疾病,吡咯烷-5-羧酸还原酶1(PYCR1)能够促进BC细胞的增殖和侵袭,加速BC进展。本研究将si-PYCR1加载到BC的骨髓间充质干细胞(BMSC)来源的外泌体(Exos)中。首先,评估BC组织/细胞中的PYCR1水平,并评估细胞增殖、侵袭和迁移。测定有氧糖酵解水平(葡萄糖摄取、乳酸生成、ATP生成和相关酶的表达)和EGFR/PI3K/AKT通路磷酸化水平。通过共免疫沉淀实验检查PYCR1-EGFR相互作用。用oe-PYCR1转染的RT4细胞用EGFR抑制剂CL-387785处理。将si‑PYCR1装载于Exos中并进行鉴定,随后评估其对有氧糖酵解和恶性细胞行为的影响。通过给小鼠注射Exo‑si‑PYCR1和Exo‑si‑PYCR1建立异种移植瘤裸鼠模型。PYCR1在BC细胞中上调,在T24细胞中表达最高,在RT4细胞中表达最低。PYCR1敲低后,T24细胞的恶性行为和有氧糖酵解降低,而在RT4细胞中PYCR1过表达则扭转了这些趋势。PYCR1与EGFR相互作用,CL‑387785抑制EGFR/PI3K/AKT通路并减弱PYCR1过表达对RT4细胞的影响,但对PYCR1表达没有影响。 Exo‑si‑PYCR1对有氧糖酵解和T24细胞恶性行为的抑制作用比si‑PYCR1更强。Exo‑si‑PYCR1阻断了异种移植肿瘤的生长,具有良好的生物相容性。简而言之,
摘要:外泌体是内体起源的细胞外囊泡,直径为30至150 nm,介导各种生物分子的细胞间转移,例如蛋白质,脂质,核酸,核酸和代谢物。他们调节受体细胞的功能,并参与多种生理和病理过程,例如免疫反应,细胞 - 细胞通信,致癌作用和病毒感染。干细胞(SC)是多能细胞或多能细胞,可以分化为各种细胞类型。scs还可以分泌外泌体,这些外泌体对各种疾病具有显着的治疗潜力,尤其是在再生医学领域。例如,源自间充质干细胞(MSC)的外泌体含有蛋白质,脂质和miRNA,可以改善内分泌疾病,例如糖尿病和癌症。SCS(SC-EXOS)的外泌体可能具有与SCS相似的优势,但风险和挑战降低。 SC-EXOS具有较低的肿瘤性,免疫原性和感染性。 他们还可以更有效地输送药物并深入组织。 在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。 我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。 我们还解决了使用SC-EXOS的当前挑战和未来方向。外泌体可能具有与SCS相似的优势,但风险和挑战降低。SC-EXOS具有较低的肿瘤性,免疫原性和感染性。他们还可以更有效地输送药物并深入组织。在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。 我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。 我们还解决了使用SC-EXOS的当前挑战和未来方向。在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。我们还解决了使用SC-EXOS的当前挑战和未来方向。
摘要:芽孢杆菌和相关属是药物生产环境中最重要的污染物之一,在物种水平上鉴定这些微生物有助于研究污染的来源以及预防性和纠正性决策。这项研究的目的是评估三种方法,以表征从巴西里约热内卢的药物单位分离出的内孢子的有氧细菌菌株。MALDI-TOF MS,并使用Sanger方法进行了完整的16S rRNA基因测序。结果表明芽孢杆菌属(n = 9; 36.0%),priestia(n = 5; 20.0%)和佩尼比曲霉(N = 4; 16.0%)的流行率。三个(20.0%)菌株显示出<98.7%的DNA测序相似性在ezbiocloud数据库上,表明可能的新物种。此外,将芽孢杆菌杆菌的重新分类为Priestia属,为Priestia pseudoflexus sp。nov。提出了。总而言之,16S rRNA和MALDI TOF/MS不足以识别物种水平的所有菌株,并且需要进行互补分析。
© 作者 2025。开放存取 本文根据知识共享署名 4.0 国际许可证授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
