鉴定食源性病原体是电泳在食品检测中的主要用途之一。病原微生物,包括细菌、病毒和真菌,是世界各地许多食源性疾病的病因。鉴定这些病原体的传统方法通常需要培养程序,这既费力又需要专用工具。电泳是一种更快捷、更可靠的替代方法。例如,该方法可用于分析病原微生物特有的蛋白质或 DNA 标记。确认病原体存在的有效方法是使用凝胶电泳分离和鉴定从食品样本中分离出的蛋白质或核酸。为了阻止流行病并在食用前保证食品的安全,及时检测至关重要。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
摘要。在本文中,为某些图开发了代数和组合特性以及跨越树数的计算。为此,讨论了一种与图形相关的拉普拉斯矩阵光谱的原始方法。它代表了一个替代过程,用于计算任何图的生成树的数量和哪些,并且基本上是在其内部周期之间的共同边数的基础上连接到生成树的数量。显示算法及其源代码,用于确定Jahangir图类别的所有边缘树的收集。给出了涉及此类图的应用程序,以便在传输声明信息中获得令人满意的安全性,并突出显示它们的最终对称属性。
随着间歇性可再生能源发电在能源结构中的占比不断增加以及负载类型更加不稳定(如电动汽车充电),近年来人们对能源需求侧响应 (DR) 的兴趣日益浓厚。需求侧响应计划被认为能够以经济高效的方式提供所需的灵活性,从而提高能源系统的可靠性。大规模需求侧响应服务的需求通常由需求侧响应聚合器来满足,即提供聚合服务并充当系统运营商和最终消费者之间的中介的实体。需求侧响应相关任务的高度复杂性,加上它们对大规模数据的使用以及对近乎实时决策的频繁需求,意味着人工智能 (AI) 和机器学习 (ML)——人工智能的一个分支——最近已成为实现需求侧响应的核心技术。人工智能方法可用于应对各种挑战,包括选择最佳消费者响应集、了解他们的属性和偏好、动态定价、设备调度和控制、学习如何激励需求响应计划的参与者以及如何以公平和经济高效的方式奖励他们。本文基于对 160 多篇论文(发表于 2009 年至 2019 年之间)、40 家公司和商业计划以及 21 个大型项目的系统回顾,概述了用于需求响应应用的人工智能方法。这些论文根据所使用的人工智能/机器学习算法和能源需求响应的应用领域进行分类。接下来,介绍了商业计划(包括初创公司和老牌公司)和大型创新项目,其中人工智能方法已用于能源需求响应。本文最后讨论了所审查的人工智能技术在不同需求响应任务中的优势和潜在局限性,并概述了这一快速增长领域未来研究的方向。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2024年12月29日发布。 https://doi.org/10.1101/2024.12.29.630658 doi:Biorxiv Preprint
Total (Commercial and ATP Certificates combined) 20-24 Gen Z 14,481 1,020 15,501 25-29 Gen Y 19,366 6,517 25,883 30-34 12,923 10,814 23,737 35-39 10,667 16,861 27,528 40-44 Gen Y & X 8,262 18,960 27,222 45-49 Gen X 6,493 19,647 26,140 50-54 7,357 23,301 30,658 55-59 Gen X&Baby Boomer 7,829 25,314 33,314 33,143 60-64婴儿启动
摘要。移动机器人中机器人技术的进步正在迅速发展,并在工业,军事,医学和公共服务等各个部门中使用。挑战包括感知,本地化,运动控制和路径计划。Dijkstra算法的目的是一种贪婪的算法,是优化计划计划以提高运动效率。Dijkstra的算法是图理论中的一种有用的方法,可以利用迭代方法在加权图中找到两个节点之间的最短路径来计算距离。所建议的算法通过同时确定从起点到所有其他点的最短途径,利用各种路径或继续在相同的路径上到达其他节点,从而加快了初始过程的速度。尽管如此,它始于中央节点,利用不受所采用路线影响的数据。作者使用服务机器人对Dijkstra的算法进行了实验,并成功地导航了三个障碍而没有任何碰撞。机器人通过保持0.23 m/s的平均速度为0.23 m/s,X轴上的平均误差为0.021米,在Y轴上保持0.021米,在找到最短和最快的路径方面取得了成功。
欧洲约有75%的能源效率的建筑物和8%的能源贫困人口,难以为家庭用具提供足够的温暖,冷却,照明和能源在建筑库存中的能源。在现有建筑物中实施热绝缘将允许解决能源效率和能源贫困,并与净零排放方案保持一致。本研究提出了一种反向决策方法,以调查在欧洲经济区(意大利,挪威和葡萄牙)内三个国家使用某些热绝缘材料的原因,在能源贫困以及环境和立法环境方面有所不同。出于这个原因,考虑了四个宏观目标,即技术(T),环境(EN),安全性(S)和经济(e)主题,被称为时态。比较了这些国家常用的十种热绝缘材料,以了解四种观点中的哪些材料在几个利益持有人的当前时代影响了他们的选择。由于所选材料在利益相关者中都没有获得最高分数,而且他们的使用可能是由于其未来实施中的挑战性,挑战和机遇所致,因此考虑了不同的气候“ what-if”场景。
随着量子硬件的快速发展,量子电路的高效模拟已变得不可或缺。主要的模拟方法基于状态向量和张量网络。随着目前量子器件中量子比特和量子门的数量不断增加,传统的基于状态向量的量子电路模拟方法由于希尔伯特空间的庞大和广泛的纠缠而显得力不从心。因此,野蛮的张量网络模拟算法成为此类场景下的唯一可行解决方案。张量网络模拟算法面临的两个主要挑战是最优收缩路径寻找和在现代计算设备上的高效执行,而后者决定了实际的效率。在本研究中,我们研究了此类张量网络模拟在现代 GPU 上的优化,并从计算效率和准确性两个方面提出了通用的优化策略。首先,我们提出将关键的爱因斯坦求和运算转化为 GEMM 运算,利用张量网络模拟的具体特性来放大 GPU 的效率。其次,通过分析量子电路的数据特性,我们采用扩展精度保证模拟结果的准确性,并采用混合精度充分发挥GPU的潜力,使模拟速度更快、精度更高。数值实验表明,在Sycamore的18周期情况下,我们的方法可以将随机量子电路样本的验证时间缩短3.96倍,在一台A100上持续性能超过21 TFLOPS。该方法可以轻松扩展到20周期的情况,保持相同的性能,与最先进的基于CPU的结果相比加速12.5倍,与文献中报道的最先进的基于GPU的结果相比加速4.48-6.78倍。此外,本文提出的策略对
摘要该论文分析了网络安全的主要概念和网络安全技术,研究了在网络安全中使用人工智能的特征,分析了机器学习的应用方法,并介绍了有关机器学习方法在网络安全中应用的实验研究结果。在这项工作中,将实施基于智能文本分析技术的主机入侵检测系统。工作描述了数据源可能面临的困难,例如,患有复杂功能的方法。本文提出了用于检测SQL注入,XS和路径遍历攻击的方法的分类,并为指定模型提供了性能测量。使用渗透测试方法。该技术检测到与最流行的攻击有关的漏洞,例如SQL注入(SQLI),跨站点脚本(XSS)和敏感数据披露。提出了安全解决方案和建议,即IT管理员可以用作保护系统免受网络犯罪威胁的指南。因此,通过修复所有检测到的漏洞以实现基本安全标准,可以证实拟议系统的有效性。使用文本分析技术开发了基于主机的入侵检测系统(HID)。