摘要:选择具有复杂,模棱两可和矛盾标准的选项是决策者的普遍挑战。选择最佳选项,他们通常使用多标准决策技术,其中专家管理有形和无形标准相互冲突的相对重要性来识别和评估可能的行动方案。做出决定涉及一个或多个人从一系列潜在选项中选择最佳选择。本研究提出了计算标准权重的多标准决策(MCDM)方法是替代方案。MCDM方法用于用于钢结构工程成本的风险评估。此问题包括许多标准和替代方案。MCDM方法在plithogenation集合下用于评估过程中的不确定性。灰色关系分析(GRA)是本研究中使用的MCDM方法,可对替代方案进行排名。收集了八个标准和八个替代方案以采用MCDM方法。灵敏度分析是在本研究中进行的。
随着城市化的快速化,许多曾经被认为稳定的领域变得脆弱,强调了风险评估和管理以确保公共安全的重要性。城市扩张通常会导致建筑物,道路和地下基础设施的建设增加,这在地下环境上增加了压力。地下空腔的崩溃,无论是由于喀斯特侵蚀等自然现象还是人类活动,例如采矿和基础设施发展,都对城市地区构成了主要风险。这些事件通常是不可预测的,导致了巨大的后果,正如2010年在危地马拉市崩溃所证明的那样,那里的60米深的污水坑吞噬了几座建筑物,将基础设施和人口暴露于严重的危险中(FU,2022年; Hermosilla,2012年)。在世界各地都报告了类似的事件,造成经济损失,取代社区并危及人类的生命。鉴于这些事件的频率和严重程度的增加,需要开发有效的方法来提早检测和降低风险。
使用机器学习方法对路面大头钉的电磁特性进行分类,grégoryandreoli*,cerema ouest / aan / entum amine ihamine,University Gustave Eiffel / lames / lames rakeeb jauber jaufer jaufer,cerema ouest oeema ouest / aan / aan / aan / aan aan / andum shreedhar savema lan earma aan erema erea a a david guilbert,david david guilbert,david Nguyen,大学古斯塔夫·埃菲尔(Gustave Eiffel当今最常用的是。高分辨率方法能够检测深度,裂纹或明显的脱束,但对于识别地下毫米界面(例如粘性涂层),它们仍然有限且不强大。在本文档中,我们建议将雷达方法与两级SVM监督学习相结合。第一次对古斯塔夫·埃菲尔大学(Gustave Eiffel University)(法国南特)疲劳旋转木马的试验使我们能够验证我们开发的数值方法。介绍21百万,这就是国际能源局(IEA)的数据,应添加多少公里的新道路基础设施,以确保全球运输直到2050年。为了防止交通密度不断增长引起的降解,我们必须能够提前评估基础设施中出现结构性或物质失败的可能性(khweir。和Fordyce,2003年)。为了最大程度地提高其耐用性,法国的路面结构使用接口钉涂层技术。这有助于完整的多层结构充当一个整体块,它可以最大程度地减少机械应变(剪切应力,单调扭曲等),从而最大程度地减少了道路结构的降解(Wang and Zhong,2019;Diakhaté等人。,2008)。多样化的技术有助于评估道路状态:破坏性的技术,通常必须钻出人行道的核心,并且必须在实验室和非破坏性的物理和化学特性中研究物理和化学特性,通常使用电磁波和机械波传播。在大多数情况下,粘性涂层是一种沥青乳液,机械地扩散,这使其连续且规则。仅在破裂阶段(乳液中存在的水的蒸发)才增加了磨损的过程,从而增加了层之间的粘附力。直到今天,我们唯一可以保证沥青乳液的同质应用是工作机器的性能。
彩色皮秒声学 (CPA) 和光谱椭圆偏振术 (SE) 相结合,测量沉积在 300 毫米晶圆上的聚合物薄膜树脂的弹性和热弹特性。使用 SE 测量膜厚度和折射率。使用 CPA 根据折射率测量声速和厚度。比较两种厚度可以检查两种方法之间的一致性。然后在 19 ◦ 至 180 ◦C 的不同温度下应用相同的组合。随着样品被加热,厚度和声速都会发生变化。通过分别监测这些贡献,可以推导出声速温度系数 (TCV) 和热膨胀系数。该协议适用于目前微电子工业使用的不同薄膜树脂制成的五种工业样品。杨氏模量在不同树脂之间相差高达 20%。每种树脂的 TCV 都很大,并且从一个树脂到另一个树脂的相差高达 57%。
1 克劳德·伯纳德里昂第一大学制药与生物科学研究所 (ISPB),69373 里昂,法国 2 里昂南医院生物化学与分子生物学系,里昂民间临终关怀院,69495 Pierre-Bénite,法国 3 里昂癌症学创新中心 (CICLY) EA 3738,里昂南医学与助产学院,克劳德·伯纳德里昂第一大学,69921 Oullins,法国 4 里昂民间临终关怀院癌症研究所循环癌症 (CIRCAN) 计划,69495 Pierre-Bénite,法国 5 里昂南医学与助产学院,克劳德·伯纳德里昂第一大学,69921 Oullins,法国 6 里昂南肺病学系急性呼吸道疾病与胸部肿瘤学Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France 7 细胞和分子放射生物学实验室 UMR CNRS5822/IP2I,南里昂医学与医学学院,Claude Bernard University Lyon I, 69921 Oullins, France 8 生物信息学系,Hospices Civils de Lyon, 69008 Lyon, France 9 INOVOTION, 38700 拉特龙什, 法国 * 通讯地址: lea.payen-gay@chu-lyon.fr
背景:手工燃烧非常具有挑战性,并且已经引入了许多治疗性干预措施,以增强燃烧后的手部功能,但是,仍然可以看到差的结果。目的:旨在探索约束诱导运动疗法(CIMT)对燃烧的主体功能的影响。患者和方法:这项前瞻性随机对照试验包括34例背侧主张手烧伤。他们的年龄从20岁到35岁。患者是从开罗大学的医院收集的,并随机分为两组; (a)组的17名患者除了接受传统疗法外接受CIMT的患者,而(b)组的17名患者仅接受了传统疗法,其中包括运动范围(ROM)练习,定位,加强运动,伸展运动和职业活动。使用手指的手指仪,手工测功机和密歇根州手部问卷(MHQ)评估了掌po pophangeal(MCP)关节ROM,手持强度和功能,此后4周和8周的治疗。结果:两组在MCP关节ROM,手柄强度和治疗8周后均显示出显着改善(P = 0.001)。在治疗8周后,MCP关节ROM和MHQ量表的平均值和MHQ量表的平均值有显着差异。结论:八周的约束运动疗法可以极大地增强燃烧的主动性运动和功能范围。关键字:约束诱导运动疗法,手部功能。简介
摘要 表面等离子体共振 (SPR) 传感器对于生物传感和环境监测等各种应用领域的高灵敏度、无标记检测至关重要。本研究使用严格耦合波分析 (RCWA) 研究了基于衍射光栅的 SPR 传感器的灵敏度和性能。分析重点关注由铜、金和银组成的单层和双层金属结构。结果表明,单层银传感器的灵敏度最高,为 169.37°/RIU,其次是金和铜,灵敏度分别为 168.4°/RIU 和 167.9°/RIU。此外,为了提高稳定性和可靠性,引入了双层配置,将一种金属的保护涂层覆盖在另一种金属上。在双层配置中,银-铜表现出最高的灵敏度,为 175°/RIU,其次是银-金,灵敏度为 173.25°/RIU,金-铜的灵敏度为 168.5°/RIU。这项研究证实了双金属 SPR 传感器实现卓越灵敏度和稳定性的潜力,突出了其在先进检测系统中的适用性。对材料特性和传感器性能之间相互作用的新见解为设计下一代等离子体传感器提供了路线图。
睾酮替代疗法(TRT)通常用于治疗性腺功能低下,目的是恢复激素水平并促进整体健康改善。然而,这种疗法可能会对生殖功能造成不利影响。本研究的目的是分析男性性腺功能低下患者睾酮替代治疗的挑战,重点关注对生育能力的影响和可用的保留生育能力的策略。该研究基于通过 PubMed 和 SciELO 数据库中的书目调查进行的综合性审查。研究结果表明,中断 TTh 并使用 HCG 和克罗米芬,对恢复性腺功能低下相关不孕症的精子发生具有部分效果。然而,还需要进一步研究来改进这些方法。结论是,虽然睾酮替代疗法对治疗性腺功能低下有效,但它会损害生育能力。通过适当的干预,有可能保持生育能力并获得更好的生殖结果。
这项研究旨在使用两种元启发式优化算法优化12乘型涡轮螺旋桨飞机出租车的飞行耐力:灰狼优化(GWO)和蚂蚁殖民地优化(ACO)。最初,采用了梯度下降方法来估计飞机的最大重量。随后,将飞机的性能特性用作设计变量和飞行耐力在特定限制下进行了优化,而不会改变飞机的物理结构。实施了优化过程,并根据性能和效率进行了评估和比较结果。这项研究表明,使用随机和集体策略提到的两种算法能够提高飞机的效率。此外,与最初的耐力相比,对三架真实飞机(撞击器,比奇克船和庞巴迪)进行了优化的飞行耐力。在这种情况下,蚂蚁菌落优化算法表现出比灰狼优化算法更好的性能,灰狼优化算法可能会对飞行运营产生积极影响而无需加油或寻找替代机场的过程。
睡眠代表了促进大脑和身体健康的强大系统。建议在过多的功能中发挥作用,例如清除有毒副产品[1-3],突触稳态[4],记忆巩固[5-11],代谢[12]和心血管肢体功能[13-16]和身体核心组织[13-16],以及身体核心组织的转换[17]。尤其是,已经提出了非剥夺性眼动(NREM)的大幅度,低频慢波来指导这些有益的效果(例如,在参考文献中进行了审查。18)。神经元活性的时期反映在慢波上的相过程中,神经元沉默的周期反映了慢波的下坡[19],从而协调了丘脑皮层睡眠纺锤体之间的时间相互作用,以支持长波波旋转的长期记忆,这是21 21 retime retive [20] [20]。然而,慢速波是否是维持健康大脑和身体的必不可少的驱动因素,仍然在很大程度上没有探索。为了阐明慢波在大脑和身体功能中的功能作用,需要调节这些振荡。在过去的几年中,尤其是听觉刺激已成为一种有希望的,无创和可行的方法,可在深度睡眠期间选择性地调节慢波[9,22-24]。但是,存在各种刺激方案,导致对行为结果的发现不一致(例如在参考文献中进行了审查。25)和关于有效性增强或减少慢波的疗效方法的核对片。这种夜间设计消除了任何NGO及其同事[9]是第一个报告靶向较慢的慢波上升的上升相似的人似乎对隔夜记忆巩固的改善似乎很重要。的下相刺激表明会干扰慢波和声明性和运动记忆的巩固[9,26]。然而,除了选择听觉刺激的适当目标阶段外,序列中的刺激数量是可变的,例如两种音调刺激方案随后刺激断裂[9,23]或窗户的刺激,其中仅在预定义长度的窗口中出现听觉刺激[7,8,22]。除了在一定程度上依赖于慢波(闭环刺激)的一定程度的所有程序外,已经证明完全开环听觉刺激也可以增强慢波[11,27]。需要考虑的另一项参数是刺激的量以及刺激是通过耳机还是通过扬声器播放。此外,一些研究使用了50至60 dB之间的固定体积[9,23,28]或个体和/或自适应体积在30至60 dB之间[10,11,22]。尽管已经采用了许多刺激方法,但听觉刺激仍处于起步阶段。因此,为此目的,还没有利用听觉刺激的全部潜力,并且需要更加了解其影响。此外,目前尚不清楚听觉刺激的功效是否在睡眠周期中保持稳定,以及是否在几秒钟的刺激中甚至保持了刺激功效。为了促进对听觉慢波调制的理解,我们在这里提出了一种新型的方法,可以使用窗口的10 s刺激(听觉刺激)在单个睡眠期内对不同的听觉刺激条件进行调查(没有听觉刺激),然后使用10 s(没有听觉刺激播放)方法。