1。引入工业化的发展,随后是环境污染的增加,可再生能源的能源生产和存储已成为必要[1-4]。近年来,由于许多研究人员的储能性能高[5-9],许多研究人员已经研究了超级电容器。与电池相比,这些设备具有高功率密度和良好的环状稳定性。它们的能量密度也比普通的介电电容器更高,以填补电池和电容器之间的空隙[10-12]。超级电容器分为两类:两层电容器(EDLC)和伪电容器。EDLC中的能量存储不涉及任何法拉第反应,而是通过电极/电解质界面的离子交换来完成。EDLC中使用的电极材料的一个示例可能是高比表面碳材料。取而代之的是,假能力能通过法拉第可逆反应在导电聚合物材料或金属氧化物的表面上存储能量[13-16]。过渡金属氧化物通常比碳基材料更稳定,并且比导电聚合物材料具有更高的能量密度,因此它们是超级电容器电极的良好候选者[17]。
空客创新有效载荷将搭载法拉第 1 号卫星发射 空客开发的下一代可重新分配任务的软件定义无线电有效载荷将在太空中得到验证 空客的新太空计划“普罗米修斯”将在轨快速验证颠覆性技术@AirbusSpace @Heads_InSpace @dstlmod 史蒂文尼奇,2020 年 7 月 1 日——空客开发的下一代可重新分配任务的软件定义无线电有效载荷普罗米修斯 1 号将于 7 月 3 日从新西兰搭载法拉第 1 号立方体卫星发射。法拉第 1 号任务是 In Space Missions Ltd 在轨演示计划的一部分。普罗米修斯 1 号是一种软件定义的无线电,连接到可以在轨道上重新编程的 400 MHz UHF 天线。它将能够从轨道上调查全球无线电频谱使用情况空中客车公司正与英国国防科学技术实验室 (DSTL) 合作,以促进中小企业、政府和空中客车公司在太空领域的更大合作。空中客车防务与航天公司英国分公司发起了自筹资金的普罗米修斯计划,旨在利用颠覆性技术快速开发灵活创新的有效载荷,为客户提供重要功能。基于空中客车公司与中小企业合作创造新颖功能和验证概念的良好记录,普罗米修斯计划在不到三个月的时间内开发出了法拉第 1 号的有效载荷。空中客车防务与航天英国公司董事总经理理查德·富兰克林表示:“通过与中小企业合作,我们能够利用他们的专业能力和灵活性为客户开发新技术和服务。一旦普罗米修斯 1 号在轨道上得到验证,我们将与中小企业合作伙伴携手,利用它降低未来服务和生命支持解决方案的风险。未来英国政府的国防需求可以通过我们在空中客车公司在 Skynet 5 上率先采用的合作方式得到最好的满足,我们积极与中小企业合作,开发新技术和服务解决方案,在将概念交付给客户之前对其进行验证。”普罗米修斯 1 号将在轨道上验证被动射频传感,使该技术能够被纳入未来可能或可能对主权航天器进行敌对跟踪的任务中。空中客车新空间团队正在倡导普罗米修斯计划,第二个任务已经在开发中,它将是带有射频和光学传感器的立方体卫星,并具有卫星间链路。普罗米修斯 2 号将于 2021 年下半年发射。
摘要:光电电池是一种带有光敏电极的电池,最近被提出作为一种在单个设备中同时捕获和存储太阳能的方法。尽管有报道称可以使用多种不同的电极材料进行光充电,但其整体运行机制仍不太清楚。在这里,我们使用原位光学反射显微镜研究 Li x V 2 O 5 电极中的光诱导充电。我们在三种条件下对电极进行单粒子成像:(a) 有闭路和光但没有电子电源(光充电),(b) 在有光的恒电流循环过程中(光增强),以及 (c) 有热但没有光(热)。我们证明光确实可以驱动 Li x V 2 O 5 中的锂化变化,同时保持电荷中性,可能是通过单个粒子中发生的法拉第效应和非法拉第效应的组合。我们的研究结果为光电电池机械模型提供了补充,强调了基于插层的充电和锂浓度极化效应都有助于提高光充电容量。关键词:光学显微镜、光电电池、氧化钒、原位成像
扫描率。循环伏安法曲线将对称形状从0.005 V•s -1至0.1 V•S -1保持,表明电极材料的放大能力。由于法拉第反应时间不足以高扫描速率,特定电容随扫描速率的增加而降低。图5C显示了在不同电流密度下TN-MO-S的充电偏差曲线。几乎对称的三角形轮廓表现出电极的电容和可逆特征。
通过电化学方法将 CO2 还原 (CO2R) 为乙烯和乙醇,可以将可再生电能长期储存在有价值的多碳 (C2+) 化学品中。然而,碳 - 碳 (C - C) 偶联是 CO2R 转化为 C2+ 的速率决定步骤,其效率低下且稳定性差,尤其是在酸性条件下。在这里,我们发现,通过合金化策略,相邻的二元位点可以实现不对称的 CO 结合能,从而促进 CO2 到 C2+ 的电还原,超越单金属表面上由缩放关系决定的活性极限。我们通过实验制备了一系列 Zn 掺入 Cu 催化剂,这些催化剂表现出增强的不对称 CO* 结合和表面 CO* 覆盖率,可在电化学还原条件下实现快速的 C - C 偶联和随之而来的加氢。进一步优化纳米界面处的反应环境可抑制氢气的释放并提高酸性条件下的 CO2 利用率。结果,在弱酸性 pH 4 电解质中,我们实现了 31 ± 2% 的高单程 CO 2 到 C 2+ 产量,单程 CO 2 利用率 > 80%。在单个 CO 2 R 流电池电解槽中,我们实现了 91 ± 2% 的 C 2+ 法拉第效率,其中乙烯法拉第效率高达 73 ± 2%,全电池 C 2+ 能量效率为 31 ± 2%,在 150 小时内以商业相关电流密度 150 mA cm − 2 实现 24 ± 1% 的单程 CO 2 转化率。
第一单元 直流电路:欧姆定律和基尔霍夫定律;独立电压源激励的串联、并联和串并联电路分析;功率和能量;电磁学:法拉第定律、楞次定律、弗莱明规则、静态和动态感应电动势;自感、互感和耦合系数的概念;磁场中储存的能量;磁滞和涡流损耗。第二单元 网络定理:叠加、戴维南和诺顿定理、互易定理、补偿、最大功率传输、特勒根和米尔曼定理、定理在直流和交流电路中的应用。
28. 居里定律 57 29. 居里-外斯定律 59 30. 达朗贝尔原理 61 31. 道尔顿倍率定律 63 32. 达西定律 65 33. 德布罗意波长 67 34. 德莫特定律 69 35. 狄拉克方程 71 36. 多普勒效应 73 37. 德雷克方程 75 38. 杜隆-珀蒂定律 77 39. 埃伦费斯特定理 79 40. 爱因斯坦场方程 81 41. 爱因斯坦广义相对论 83 42. 电势 85 43. 埃尔-赛义德规则 87 44. 等效原理 89 45. 欧拉-拉格朗日方程 91 46. 欧拉方程 93 47. 欧拉运动定律 95 48. 法拉第定律 97 49. 法拉第电解定律 99 50. 法克森定律 101 51. 费马原理 103 52. 费米佯谬 105 53. 菲克扩散定律 107 54. 热力学第一定律 109 55. 傅立叶定律 111 56. 高斯定律 113 57. 盖-吕萨克定律 115 58. GEM 方程 117 59. 测地线方程 119 60. 吉布斯-亥姆霍兹方程 121