使用可再生电力将二氧化碳/一氧化碳升级为多碳 C 2 + 产品,为更可持续的燃料和化学品生产提供了一种途径。醋酸盐是最具吸引力的产品之一,其有利可图的电合成需要效率更高的催化剂。本文报道了一种配位聚合物 (CP) 催化剂,该催化剂由通过 Cu(I)-咪唑配位键连接的 Cu(I) 和苯并咪唑单元组成,可在流动池中以 400 mA cm − 2 的电流密度将 CO 选择性还原为醋酸盐,相对于可逆氢电极,在 − 0.59 伏时法拉第效率为 61%。该催化剂集成在基于阳离子交换膜的膜电极组件中,可实现 190 小时的稳定醋酸盐电合成,同时实现从阴极液体流中直接收集浓缩醋酸盐(3.3 摩尔),CO 到醋酸盐转化的平均单程利用率为 50%,在电流密度为 250 mA cm − 2 时醋酸盐全电池平均能量效率为 15%。
生物质衍生化学品的氢化对于生产生物燃料和增值化学品具有重要意义。生物质还原的热化学过程通常使用氢气作为还原剂,在高温和高压下进行。本文,作者研究了 5-羟甲基糠醛 (HMF) 直接通电还原为生物聚合物前体 2,5-双(羟甲基)呋喃 (BHMF)。注意到先前关于这种转化的报告中电流密度有限,因此研究了一种由三元金属纳米树枝状晶体与阳离子离聚物混合而成的混合催化剂,后者旨在提高局部 pH 值并促进表面质子扩散。该方法在使用专为 p-d 轨道杂化设计的 Ga 掺杂 Ag-Cu 电催化剂实施时,可控制对 BHMF 的选择性,在 100 mA cm −2 时实现 58% 的法拉第效率 (FE) 和 1 mmol cm −2 h −1 的生产速率,后者的速率与之前最好的报告相比翻了一番。
惯性静电约束 (IEC) 利用强电场来产生和约束等离子体。它已广泛用于进行核聚变反应,并在商业上用作活化分析的中子源。本研究调查了 IEC 推进器的两种不同放电模式,即“喷射”模式和“喷雾”模式。本文比较了 IEC 系统在各种初步设计方案下的放电特性,例如阴极网格设计和阴极网格尺寸。高分辨率图像用于在多个操作点进行强度分析。基本法拉第探针用于定性记录等离子体电流密度的变化。结果表明,在更负的电位下偏置阴极会导致网格吸收的电流和可见等离子体的可见强度增加。电流和光强度逐渐增加,直到发生从“喷射”到“喷雾”的模式转变。换句话说,“喷射”模式始终先于“喷雾”模式。此外,背景压力和施加的阴极电位被证明是 IEC 设备的两个主要操作变量。最后,当设备以“喷雾”模式运行时,记录到更高的电流密度,然而,在“喷射”模式下,喷出的等离子体更加准直。
无线电力,也称为无线电源或无线能量传输,是一项突破性的技术,它正在改变我们对电力传输的看法。无线电力不依靠物理电线和电缆来传输电能,而是使用电磁场在电源和设备之间传输电力。这项技术有可能彻底改变我们为电子设备充电、为家庭和企业供电的方式,甚至实现新的交通方式。无线电力的概念并不新鲜。事实上,电磁感应的基本原理是由迈克尔法拉第在 19 世纪初发现的。然而,直到 21 世纪,得益于材料科学、电子学和工程学的进步,无线电力才成为一种可行的技术。如今,无线电力被用于各种应用,从智能手机和电动牙刷的无线充电板到电动汽车和工业设备的无线电力传输系统。虽然仍有一些挑战需要克服,例如安全问题和监管问题,但无线电力的潜在好处是巨大而深远的。在本文中,我们将探讨无线电力背后的技术、其当前和潜在的应用以及它所带来的挑战和机遇。
超强磁场在10 18高斯的阶次,最强的磁场在自然界中被预期在Rhic Energies的重离子碰撞的早期阶段就会产生[1,2]。磁场主要由观众产生,并且衰减非常快,其时间尺度与碰撞核的通道时间相当[1,2]。然而,田地的衰减可以通过法拉第诱导e ff ECT来补偿,该电场取决于培养基(例如电导率)和夸克的形成时间。此外,对初始电磁场的形成和衰变的研究对于在存在电磁(EM)磁场的情况下了解Quark-Gluon等离子体(QGP)的演变至关重要。重离子碰撞中的初始状态可能具有显着的纵向去相关,从而导致在不同的pseudorapity范围内重建的事件平面之间存在差异[3,4]。此外,能量沉积中的初始状态几何形状和不对称性可以演变为最终状态流量谐波和事件平面角相关性,该研究可用于约束各种初始状态模型,并通过碰撞核来理解能量沉积的机制。
在本研究中,严格分析了流动电解槽中高速率 CO 2 还原过程中的碳平衡。由于电化学还原和与电极-电解质界面处的 OH - 反应,气体扩散电极上的 CO 2 消耗导致流出电解槽的气体体积流量大幅降低,尤其是在使用高碱性电解质和高电流密度时,这主要是由于阴极/电解质界面处的 pH 值升高。如果不考虑 CO 2 消耗,在高电流密度 CO 2 还原条件下,特别是在高 pH 值电解质的情况下,主要气体产物的法拉第效率可能会被显著高估。此外,通过两步程序阐明了详细的碳平衡路径,即 CO 2 与阴极/电解质界面处的 OH - 反应,然后由于阳极附近 pH 值相对较低而在阳极/电解质界面处生成 CO 2。基于提出的两步碳平衡路径,对阳极电解液中释放的气体进行系统探索,揭示了 HCO 3 - 或 OH - 阴极电解液向 CO 3 2- 阴极电解液的转变,并通过 pH 测量进一步证实了这一点。
本文是关于化学物质的量子模拟。虽然这是一篇化学期刊上关于法拉第讨论的介绍性文章,但实际上它是为两个读者群撰写的:量子化学家和量子信息理论家。这是因为,尽管近年来量子化学和量子信息理论的交集越来越多,但一个领域的从业者往往对另一个领域的观点了解有限。本文的一个目的是描述量子化学家对化学物质中量子多体问题的直觉。这种直觉指导了当今对改进方法及其应用的研究。另一个目的是给出一个关于量子化学的有利观点,希望能够强调量子信息理论家的一些关注点,我们相信这对量子化学的未来发展有用。量子信息论是一个具有可证明结果的数学领域,而量子化学主要是经验领域。由于作者是量子化学家,本文以量子化学的非正式风格撰写。在某些情况下,它提供了作者的(非严谨的)个人意见。直觉和意见显然不是定理,但我们希望它们能够在前进的道路不明朗时成为有价值的路标。
古典和量子力学:牛顿定律;两次身体碰撞 - 散射在实验室和大规模框架中心;中央力量运动;相对论的特殊理论 - 洛伦兹的转化,相对论运动学和质量 - 能量等效;广义坐标,拉格朗日和哈密顿式配方,动作方程以及对简单问题的应用。量子力学的假设;不确定性原则; Schrodinger方程;一,二维和三维潜在问题;盒子中的粒子,通过一维电势屏障的传播,谐波振荡器,氢原子。电磁学:库仑定律,高斯定律,多极扩展,物质的电场,泊松和拉普拉斯方程,诱导的偶极子,极化,电位移,线性介电介质。Lorentz Force Law,Biot-Savart定律,B的差异和卷曲,磁载体电位,磁化,线性和非线性培养基。时间变化的领域,麦克斯韦方程和保护法;法拉第的感应定律,磁场中的能量,麦克斯韦的位移电流,波动方程,连续性方程,poynting的定理,电磁波,波动方程,真空和物质中的EM波,吸收和分散。
摘要:在太空探索过程中,长期连续氧供应至关重要。考虑成本和可行性,原位资源利用率(ISRU)可能是一个有前途的解决方案。CO 2向O 2的转换是ISRU的关键点。此外,在火星大气中,丰富的CO 2资源的利用是载人深空探索领域的重要话题。Sabatier反应,Bosch反应和固体氧化电解(SOE)是降低CO 2的众所周知的技术。但是,上述所有技术都需要大量的能耗。在本文中,我们基于微流体控制在室温下设计了一种电化学膜反应器,以减少外星空间中的CO 2。在该系统中,H 2 O在阳极上被氧化为O 2,而CO 2在阴极上降低至C 2 H 4。C 2 H 4的最高法拉第效率(Fe)为72.7%,单一通信碳效率朝向C 2 H 4(SPCE-C 2 H 4)为4.64%。此外,采用了微流体控制技术来克服微重力环境的影响。该研究可以为在空间探索过程中的长期连续氧供应提供解决方案。
摘要:本文对钇铁石榴石 (Y 3 Fe 5 O 12 , YIG) 和赤铁矿 ( α -Fe 2 O 3 ) 光催化分解水的性能进行了详细的光谱和动力学比较。尽管电子结构相似,但 YIG 作为水氧化催化剂的性能明显优于赤铁矿,光电流密度提高了近一个数量级,法拉第效率提高了两倍。通过超快、表面敏感的 XUV 光谱探测电荷和自旋动力学表明,性能增强的原因在于 1) 与赤铁矿相比,YIG 中的极化子形成减少;2) YIG 中催化光电流的固有自旋极化。线性 XUV 测量表明,与赤铁矿相比,YIG 中表面电子极化子的形成显著减少,这是由于 YIG 中位点相关的电子-声子耦合在光激发时导致自旋极化电流。使用 XUV 磁圆二色性直接观察 Fe M 2 、 3 和 OL 1 边缘的表面自旋积累和化学状态分辨率,提供了自旋极化电子动力学的详细图像。总之,这些结果表明 YIG 是高效自旋选择性光催化的新平台。