This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
本文内容(插入演示文稿、文章、视频等)是根据联邦教育部与堪萨斯州教育部达成的协议开发的。但是,这些内容不一定代表教育部的政策,您不应认为这些内容已获得堪萨斯州教育部或联邦政府的认可。TASN 自闭症和高等教育行为支持由堪萨斯州教育部特殊教育和职称服务部管理的 B 部分资金资助。TASN 自闭症和高等教育行为支持在其计划和活动中不会因种族、肤色、国籍、性别、残疾或年龄而歧视任何人。以下人员已被指定处理有关非歧视政策的问询:Keystone Learning Services 副主任,500 E. Sunflower,Ozawkie KS 66070,785.876.2214 12/16/21
资料来源:https://towardsdatascience.com/machine-learning-methods-to-aid-in-coronavirus-response-70df8bfc7861、https://bdtechtalks.com/2020/03/09/artificial-intelligence-covid-19-coronavirus/、https://news.yahoo.co.jp/byline/kazuhirotaira/20200326-00169744/
高温超导体由于其独特的电子特性和非常规的超导行为而引起了极大的关注。尤其是,由高能离子植入,压力和电磁场等外部场引起的高体性超导材料的相变已成为研究热点。但是,潜在的机械主义尚未完全理解。第一原理计算被广泛认为是深入探索这些内在机制的有效方法。在这项研究中,使用第一原理计算来研究氧空位现象对不同功能下YBA 2 Cu 3 O 7(YBCO 7)的电子传递性能和超导性能的影响(PBE,PBE + U,HSE06)。结果表明,氧空位显着改变了带的结构,并且在不同功能的预测中观察到了考虑的差异。YBA 2 Cu 3 O 6(YBCO 6)的计算带隙范围为0至1.69 eV。较大的带隙表明是绝缘状态,而没有带隙的缺乏表明材料保持金属。通过将结果与实验结果进行比较,我们发现HSE06功能提供了最合理的预测。带隙的存在或不存在主要受铜轨道的影响。氧气空位会导致材料的C轴拉长,这与实验中He-ion辐照后X射线差异(XRD)分析中观察到的趋势是一致的。我们的发现有助于解释在外部田地下,尤其是He-Ion Irra-priation的金属 - 绝缘体相变,并为开发高温超导材料及其设备应用提供了理论基础和新见解。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
量子分类和假设检验(状态和通道区分)是两个紧密相关的主题,主要区别在于前者是数据驱动的:如何将量子态 ρ(x) 分配给相应的类 c(或假设)是从训练期间的示例中学习的,其中 x 可以是可调的实验参数,也可以是“嵌入”到量子态中的经典数据。该模型是否具有泛化能力?这是任何数据驱动策略中的主要问题,即即使对于以前从未见过的状态,也能预测正确的类别的能力。在这里,我们通过证明量子分类器的准确性和泛化能力取决于量子态空间 Q 与经典参数空间 X 或类空间 C 之间的(Rényi)互信息 I(C:Q) 和 I2(X:Q),建立了量子分类与量子信息论之间的联系。基于上述特征,我们展示了 Q 的不同属性如何影响分类准确性和泛化,例如希尔伯特空间的维数、噪声量以及通过池化层等方式从 X 中忽略的信息量。此外,我们引入了信息瓶颈原理的量子版本,使我们能够探索准确性和泛化之间的各种权衡。最后,为了检验我们的理论预测,我们研究了 Ising 自旋链的量子相的分类,并提出了变分量子信息瓶颈方法来优化经典数据的量子嵌入以利于泛化。
摘要 — 机器学习模型在对未知数据集进行推理时,通常会对熟悉的组或相似的类集产生有偏差的输出。人们已经研究了神经网络的泛化以解决偏差,这也表明准确度和性能指标(例如精确度和召回率)有所提高,并改进了数据集的验证集。测试和验证集中包含的数据分布和实例在提高神经网络的泛化方面起着重要作用。为了生成无偏的 AI 模型,不仅应对其进行训练以实现高精度并尽量减少误报。目标应该是在计算权重时防止一个类/特征对另一个类/特征占主导地位。本文使用选择性得分和余弦相似度等指标研究了 AI 模型上最先进的对象检测/分类。我们专注于车辆边缘场景的感知任务,这些任务通常包括协作任务和基于权重的模型更新。分析是使用包括数据多样性差异、输入类的视点和组合的案例进行的。我们的结果表明,使用余弦相似度、选择性得分和不变性来衡量训练偏差具有潜力,这为开发未来车辆边缘服务的无偏 AI 模型提供了启示。索引术语 — 偏差、数据多样性、特征相似度、泛化、选择性得分
研究团队开发了自适应采样器ASr,一种基于任务多样性、熵和难度动态加权的分 布生成函数,以优化元学习模型的泛化性能,并为此提出了一种通用的元学习算法。 研究团队在多个基准数据集和不同学习场景下对所提方法进行了广泛实验,包括小 样本学习、跨域学习、多域学习和增量学习等,并从多个维度对方法的有效性、泛化性 、计算效率等进行了评估和对比,结果证明了所提方法在不同网络架构和元学习框架下 的优越性能和通用性。
图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。