瞄准者:本指南主要是为临床医生提供的教育资源,以帮助他们提供优质的医疗服务,不应将其包括在内的所有适当的程序和测试,或不包括其他程序和测试,这些程序和测试可合理地指导获得相同的结果。遵守本指南并不一定能确保成功的医疗结果。在确定任何特定程序或测试的适当性时,临床医生应将其自己的专业判断应用于个别患者或标本所呈现的特定临床情况。临床医生被鼓励记录使用特定程序或测试的原因,无论它是否符合本指南。还建议临床医生注意通过该指南的日期,并考虑在该日期之后可用的其他医学和科学信息。©美国医学遗传学学院,2009年(部分通过MCHB/HRSA/HHS授予#U22MC03957)
图 1 : AI 带来 OA 功能的重构 ......................................................................................... 3 图 2 :微软发布 Copilot .................................................................................................. 3 图 3 :百度“如流” ........................................................................................................ 3 图 4 : Copilot 根据要求起草邮件 .................................................................................... 4 图 5 : Copilot 提炼邮件内容 ........................................................................................... 4 图 6 : Copilot 对会议内容进行总结并支持提问 .............................................................. 5 图 7 : Copilot 支持会议内容的实时总结和提问 .............................................................. 5 图 8 : Copilot 对客户关注的领域进行扫描 ..................................................................... 5 图 9 : Copilot 根据销售资料提供竞品分析建议 .............................................................. 5 图 10 : Copilot 整理各类资料协作对工作内容进行梳理 ................................................. 6 图 11 : Copilot 为接下来的会议准备相关资料 ................................................................ 6 图 12 :泛微智能办公平台框架图 .................................................................................... 7 图 13 :泛微智能办公平台前端技术 ................................................................................ 7 图 14 :泛微小 e 助手查询业绩 ....................................................................................... 7 图 15 :泛微小 e 助手智能填单 ....................................................................................... 7 图 16 :小致语音助手技术框架 ........................................................................................ 8 图 17 :小致语音助手使用示例 ........................................................................................ 8
a 发现指在任何肿瘤类型中首次发现。b 可操作性基于对该生物标志物定义的疗法的首次肿瘤不可知论批准。BRAF,v-raf 鼠肉瘤病毒致癌基因同源物 B1;CCA,胆管癌;CRC,结直肠癌;dMMR,缺陷错配修复;FDA,美国食品药品监督管理局;MSI,微卫星不稳定性;NTRK,神经营养酪氨酸受体激酶;RET,ret 原癌基因;TMB,肿瘤突变负担。
泛伦敦大学学院 AAV 基因治疗研讨会展示伦敦大学学院各个院系的经验,涵盖载体开发、临床前研究和临床经验。欢迎参加泛伦敦大学学院 AAV 基因治疗研讨会,由组委会和伦敦大学学院神经病学研究所基因治疗加速器中心为您带来我们非常高兴地宣布第一届泛伦敦大学学院研讨会将重点关注 AAV 基因治疗发展。本次研讨会将展示伦敦大学学院各个院系的丰富经验,涵盖载体开发、临床前研究和临床经验。这是一场全天活动,主题演讲者是伦敦大学学院的发言人,海报展示了我们大学的专业知识组委会:Francesco Muntoni 教授、Paul Gissen 教授、Jenny McIntosh 博士、Jo Ng 博士、Ahad Rahim 教授、Trevor Smart 教授、Pamela Tranter 博士和 Simon Waddington 教授
本出版物仅供参考,并非投资活动建议。本出版物“按原样”提供,不作任何形式的陈述或保证。尽管已采取一切合理措施确保内容的准确性,但泛欧交易所不保证其准确性或完整性。泛欧交易所对因使用、信任或根据所提供信息采取行动而造成的任何损失或损害概不负责。本出版物中列出或提及的任何信息均不构成任何合同的基础。泛欧交易所子公司运营的交易所交易的金融产品的权利和义务的产生应完全取决于市场运营商的适用规则。本出版物中或与本出版物相关的所有所有权和利益均归泛欧交易所所有。未经泛欧交易所事先书面许可,不得以任何形式重新分发或复制本出版物的任何部分。
令人担忧的泛 INSTI 耐药性的出现:对 INSTI 初治患者治疗失败后多替拉韦耐药性的系统范围评价 Sumit Arora,医学教授,印度新德里陆军医科学院 Nishant Raman,印度新德里德里坎特基地医院 Anirudh Anilkumar,首席医疗官,Ferry Lifesciences,印度孟买 Kuldeep Ashta,医学教授,印度贾朗达尔陆军医院 N Kisenjang,医学副教授,印度新德里德里坎特基地医院 Charu Mohan,医学教授,印度新德里陆军医科学院 摘要 简介 多替拉韦 (DTG) 是一种第二代整合酶链转移抑制剂 (INSTI),广泛用于 HIV 治疗,尤其是在资源匮乏的环境中。尽管其疗效被证实,但在基于 NRTI + DTG 的双重 ART 方案失败的患者中,人们出现了对 DTG 耐药突变 (DRM) 的担忧。本综述研究了 INSTI 初治患者中这些 DRM 的模式和频率。方法进行了系统的范围界定审查,综合了 21 项研究(2013-2024 年)的数据,这些研究涉及 59 名 INSTI 初治 HIV-1 (PLH) 患者,他们在接受 NRTI + DTG 双重 ART 治疗后出现病毒学失败 (VF)。数据由两名独立审阅者提取,关键信息包括 ART 史、DRM 概况、基于 DTG 的 ART 持续时间以及失败时的病毒载量。定性综合确定了常见的耐药模式、地理分布和 HIV 亚型相关性。结果最常见的 DRM 是 G118R (42.4%) 和 R263K (38.9%)。G118R 与 T66I 和 E138K 结合时与高水平耐药性和泛 INSTI 耐药性相关。R263K 经常单独出现或与轻微突变一起出现,也赋予中等程度的耐药性。耐药模式因 HIV 亚型而异,非 B 亚型表现出更高的 G118R 和 Q148HRK 突变频率,而 R263K 在 B 亚型中占主导地位。结论:在 INSTI 初治患者中出现 DTG 耐药性,特别是在资源有限的环境中,令人担忧。G118R 和 R263K 是最常见的突变,前者导致全 INSTI 耐药性。这些发现强调了监测耐药模式的重要性,特别是在非 HIV-B 亚型中,以优化 ART 策略。关键词:抗逆转录病毒疗法、耐药性、HIV 感染、整合酶抑制剂、诱变、多替拉韦、HIV-1、HIV 亚型、核苷逆转录酶抑制剂、病毒学失败。
A. Vela SSS,3,布鲁斯·霍夫曼(Bruce Hoffman Ttt),3,伯纳德·蒙特罗(Bernard Monteiro ,2 ,2 , Finish Book, 2 , Gistlere 2 , 2 , Synnaeus, 2 , Astrid Acosta, 2 , Edwin Agudelo, , Ferdinand G. Have gggg,2 , André L. C. Cano hhh,2 2 2 2 2 2 2 2 2 2 2 2 2 , Lucelia N. Carvalho,2 , 2 , 2 2 , 2 , Murilo S. Tables mmm,2 , Carlos Are,2 ,卡罗来纳州R. C John G. Lundberg。 wwww,2,20,Lucia Rapp Py-Daniel F,2,Frank R. V Leandro M.
摘要:鸟氨酸转氨甲酰酶缺乏症 (OTCD) 是最常见的尿素循环障碍,具有很高的未满足需求,因为目前的饮食和医疗治疗可能不足以防止高氨血症发作,高氨血症发作可能导致死亡或神经系统后遗症。迄今为止,肝移植是唯一的治愈选择,但由于供体短缺、需要终生免疫抑制和技术挑战,肝移植并未广泛应用。最近显示出巨大前景的研究领域是基因治疗,OTCD 已成为不同基因治疗方式的重要候选者,包括 AAV 基因添加、mRNA 治疗和基因组编辑。本综述将首先总结临床转化的主要步骤,强调每种基因治疗方法的优势和挑战,然后重点介绍当前的临床试验,最后概述 OTCD 基因治疗的未来发展方向。
摘要1,3-二吡基-8-苯基黄嘌呤的胺官能化衍生物已以tri的形式制备,作为黄嘌呤胺(pH] XAC),用作用于腺苷受体的抗吸虫辐射。[3H] XAC具有较高的受体亲和力,较高的特异性活性,较低的非特异性膜结合,并且比1,3-二乙基-8-- [3H]苯甲胺更有利的亲水性,这是一种用于腺苷受体受体结合的黄嘌呤。在大鼠脑皮质膜中,[3H] XAC表现出可饱和的特异性结合,Kd为1.23 nm和A BM。在370c时为580 FMOL/mg的蛋白质。N6-(R-苯基丙酰丙基)腺苷是[3H] XAC结合的更有效的抑制剂,而不是5'-N-乙基辅助辅助腺苷,表明结合与Al-腺苷受体有关。在没有GTP的情况下,腺苷激动剂与[3H] XAC结合的抑制曲线是双相的,表明[3H] XAC与Al受体的低亲和力激动剂结合。在GTP存在下,腺苷类似物表现出[3H] XAC的结合的单相,低亲和力抑制。抑制[茶碱或各种8-苯基黄嘌呤的3HJXAC结合是单相的,并且这些效力与这些红明因作为腺苷受体拮抗剂的效力均具有均匀的效果。小牛脑膜中的受体部位对[3H] XAC表现出较高的亲和力(KD = 0.17 nm),而豚鼠中的部位表现出较低的富裕感(KD = 3.0 nm)。[3H] XAC结合位点的密度在所有物种的脑膜中相似。