还可以添加直线和曲线来拟合散点图 左边是线性回归(直线显示两个变量之间的关系),右边是样条回归(平滑的曲线显示两个变量之间的关系)变量)
其中 p I + p X + p Y + p Z = 1。我们主要考虑去极化噪声的情况 p X = p Y = p Z = p / 3,p I = (1 − p )。▶ 众所周知 1 使用随机 Clifford 单位向量进行编码,可以实现称为哈希界限的速率
异常及其患病率每年增加。其发育与肠道微生物群的不平衡密切相关,诸如肠道肝轴的破坏,对睾丸屏障的损害以及内毒素血症在其发病机理中起关键作用。近年来,肠道菌群的调节已成为NAFLD治疗的热门话题。Rifaximin是一种口服施用的不可吸收抗生素,在改善肠道菌群,减少氧毒素和减少炎症因子方面已显示出潜力。虽然短期使用已显示出积极的影响,但长期使用的安全及其对有益细菌的影响仍需要进一步研究。future研究应着重于优化利福昔明治疗策略,以为NAFLD提供更有效的治疗选择。
• 子结构分析 将技术的演进和平台的构建定位为服务的子结构。 参考路线图等,提取使用场景,考虑技术的演进。 商业模式的变化(关于平台的使用,是在影响分析部分提到的,而不是作为使用场景。
【案例一:人类基因组计划】1990年前后,美国 破译人类基因组不仅会对研究人员和医疗实践产生影响,而且会对每个人和整个社会产生影响。 (保护遗传信息=个人信息、防止基于遗传信息的歧视等)因此,不仅研究人员、医生、患者,而且更广泛意义上的社会也有必要讨论在何种程度上才是“可以接受的”。
在本文中,我们讨论了具有开放边界条件的量子比特(自旋 1/2)双量子电路的杨-巴克斯特可积性问题,其中两个电路复制品仅在左边界或右边界耦合。我们研究了体积由自由费米子 XX 类型或相互作用 XXZ 类型的基本六顶点幺正门给出的情况。通过使用 Sklyanin 的反射代数构造,我们获得了此类设置的边界杨-巴克斯特方程的最一般解。我们使用此解从转移矩阵形式构建具有两步离散时间 Floquet(又名砖砌)动力学的可积电路。我们证明,只有当体积是自由模型时,边界矩阵通常才是不可分解的,并且对于特定的自由参数选择会产生具有两个链之间边界相互作用的非平凡幺正动力学。然后,我们考虑连续时间演化的极限,并在 Lindbladian 设置中给出一组受限边界项的解释。具体来说,对于特定的自由参数选择,解对应于开放量子系统动力学,源项表示从自旋链边界注入或移除粒子。
基于图卷积的方法已成为图表表示学习的标准,但它们对疾病预测任务的应用仍然非常有限,这特别是在神经发育和神经发育生成脑疾病的分类中。在本文中,我们通过在图形采样中掌握聚合以及跳过连接和身份映射来引入Ag-Gregator归一化卷积网络。提出的模型通过将成像和非成像特征同时纳入图节点和边缘来学习歧视图形节点表示形式,以增强预测能力,并为基础的脑疾病的基础机械抗体提供整体观点。跳过连接使信息从输入功能直接流到网络的后期层,而身份映射有助于在功能学习过程中维护图的结构信息。我们根据两个大型数据集,自闭症脑成像数据交换(ABIDE)和阿尔茨海默氏病神经影像学计划(ADNI)进行了替补,以预测自闭症谱系障碍和阿尔茨海默氏症的异常。实验结果表明,与最近的基线相比,我们的方法的效率是几个评估指标的表现,分别在Abide和ADNI上的图形卷积网络上,分类的分类卷积网络分别获得了50%和13.56%的相关性改善。
最近邻间距分布遵循一维泊松分布P(s)=e−s[7],而混沌系统则表现出能级排斥力,其P(s)根据其对称性类接近于随机矩阵理论(RMT)的维格纳猜测,当s较小时,P(s)∝sβ,其中对正交、酉和辛对称,β=1,2,4,这是著名的Bohigas-Giannoni-Schmit(BGS)猜想的内容[8]。BGS猜想现在在半经典理论中得到了很好的证实,适用于具有适当经典极限的系统[9-11],并得到许多不同量子系统中大量数值和实验证据的支持[12-14]。多体量子系统的情况则不太清楚,尽管最近取得了一些理论进展 [ 15 – 17 ] 。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常,BGS 猜想被认为对多体量子系统也成立,这主要基于数值结果,但仍缺乏严格的推导。可积和混沌通用极限之间的转变是非通用的,取决于所研究的特定系统的特性,尽管已针对不同系统进行了非常详细的探索 [ 18 , 19 ] 。例如,在可积与混沌正交情况之间的转变中,一些系统表现出分数能级排斥,P(s)∝sβ,β值在可积情况β=0与对应的RMT系综值β=1之间连续变化,而其他系统则表现出满能级排斥,但仅限于一部分能级[20]。许多系统,特别是多体情况,表现出前一种行为。然而,Berry和Robnik的半经典转变理论预测了后一种行为[19]。在这种情况下P(0)=F,其中F由所考虑模型的经典极限的相空间中规则轨道的分数给出。在开放量子系统中,该理论的发展要落后得多,即使第一批结果是在BGS猜想提出后不久就出现的[21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子随时间演化的特征。在马尔可夫近似下,刘维尔算子是线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22] 。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。该问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布符合得很好 [21] 。在混沌极限中,对于较小的s值,存在普遍的立方斥力P(s)∝s3,就像在非厄米随机矩阵的Ginibre系综中一样[23],尽管完整P(s)分布的细节取决于非厄米矩阵的对称性[24,25]。对于开放量子自旋链,从可积到混沌的转变中的能级间距分布可以通过具有谐波约束的静态二维库仑气体来拟合,其中能级斥力由温度的倒数给出,表现出转变中的分数能级斥力[26]。最近,由于发现了新的可积多体刘维尔粒子家族[27-29],人们需要采用不同的方法来研究开放量子系统的可积和混沌特性。扩展精确可解和量子可积的 Liouvil 函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌 Liouvil 函数复谱的统计特性 [ 30 , 31 ] 。然而,在物理多体 Liouvil 函数中,精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在本文中,我们将基于 SU(2) 自旋 1 Richardson 模型的文献 [ 28 ] 模型扩展到有理 Richardson-Gaudin (RG) 类可积模型中的可积线。这种新的可积 Liouvil 函数族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们
辛对称性,这是著名的Bohigas-Giannoni-Schmit (BGS)猜想的内容[8]。BGS猜想目前在半经典理论中已经得到充分证实,适用于具有适当经典极限的系统[9–11],并得到许多不同量子系统中大量数值和实验证据的支持[12–14]。多体量子系统中的情况尚不清楚,尽管最近取得了一些理论进展[15–17]。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常假设BGS猜想对多体量子系统也成立,这主要基于数值结果,但仍然缺乏严格的推导。可积通用极限与混沌通用极限之间的转变是非通用的,取决于所研究特定系统的特性,尽管已针对不同系统进行了非常详细的研究 [18,19]。例如,在可积和混沌正交情况之间的转变中,一些系统呈现分数能级排斥,P ( s ) ∝ s β,β 的值在可积情况β = 0 和相应的 RMT 集合值β = 1 之间连续变化,而其他系统呈现满能级排斥,但仅限于一部分能级 [20]。许多系统,特别是在多体情况下,都表现出前一种行为。然而,Berry 和 Robnik 的半经典转变理论预测了后一种行为 [19]。在这种情况下,P (0) = F,其中 F 由所考虑模型的经典极限在相空间中的规则轨道分数给出。在开放量子系统中,该理论的发展程度要低得多,即使第一批结果在 BGS 猜想提出后不久就出现了 [21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子的时间演化。在马尔可夫近似中,刘维尔算子是一个线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22]。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。解决这个问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布非常吻合 [21]。在混沌极限中,对于较小的 s 值,会出现普遍的立方排斥力 P ( s ) ∝ s 3,就像非厄米随机矩阵的 Ginibre 系综 [23] 中的情况一样,尽管完整的 P ( s ) 分布的细节取决于非厄米矩阵的对称性 [24, 25]。对于开放的量子自旋链,从可积到混沌转变过程中的能级间距分布已通过具有谐波约束的静态二维库仑气体拟合,其中能级排斥力由温度的倒数给出,表现出转变过程中的分数能级排斥力 [26]。最近,由于发现了新的可积多体刘维尔函数家族 [27–29],需要采用不同的方法来研究开放量子系统的可积和混沌性质。扩展精确可解和量子可积刘维尔函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌刘维尔函数复谱的统计特性 [30,31]。然而,物理多体刘维尔函数中精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在这封信中,我们将扩展参考文献中的模型。 [28] 基于 SU(2) 自旋 1 Richardson 模型,将其转换为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 家族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后,我们根据单个参数定义一个 Liouvillian,它在可积性和完全混沌极限之间进行插值。利用这些模型 Liouvillians,我们