摘要。如今,由于其在机械和热性能方面的许多优势,聚氨酯(PU)泡沫在许多应用中成功替换了各种工程材料。在各种应用中,必须根据用户要求将PU FOAM形成各种三维模型,通过使用CAM软件和CNC铣削加工来制造产品。因此,根据材料和切割工具的性质和特征,在铣削加工过程中选择切割参数是必不可少的,并且显着影响了产生的PU泡沫产品的几何结构和表面粗糙度。根据对本文的审查,必须适当考虑几个加工参数,包括主轴旋转速度,切割深度,切割工具选择和进料速度。振动将随着主轴旋转速度的增加而增加,这带来了切割工具,但会带来更好的表面质量。可以通过选择适当的切割深度并产生低表面粗糙度值来实现连续的芯片形成。选择与材料特征相匹配的合适切割工具和几何形状可以减少加工过程中物质损害的风险,从而降低表面粗糙度值。最后,较低的切割率将使表面粗糙度最小化,但会增加尖端磨损的风险。
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
在压缩负载下研究了基于陶瓷泡沫和ALSI10MG轻质铝合金的互穿金属陶瓷复合材料。陶瓷预成型是通过机械搅拌,干燥和最终烧结而产生的。它的相对密度约为25%,并通过铝合金通过气压浸润渗透。压缩负荷期间的损伤过程以及对裂纹发育的理解是这项研究的重点,并通过补充2D和3D表征方法获得。因此,使用通用测试机,数字图像相关性和显微镜设置的2D表面原位研究设置。进行3D研究,开发并进行了具有原位X射线计算机断层扫描的压缩测试,以了解材料裂纹的生长和裂纹的传播,以及其互穿金属 - 陶瓷复合材料内的失效机制。材料在平行于载荷方向的陶瓷相中显示裂纹起始。随后裂纹簇的形成随后发生了故障机理的变化,这是由于剪切应力支配的失败,其宏观裂纹在45°方向上的宏观裂缝在载荷方向上发生了变化。可以确定复合材料的良好失败。2D和3D调查方法的组合可以深入了解互穿复合材料的失败行为,从而有助于理解超出当前知识状态的失败机制。
•在沥青生产中使用废料的增加(说唱,玻璃,废物,塑料,磨碎橡胶,碳粉等)•降低生产和压实温度(WMA技术)•减少干燥骨料的能量(覆盖储存量,绝缘,隔热,使用绿色燃料,溶液等)•使用绿色燃料和较高的碳纤维材料,例如使用较低的碳水化合物•使用较低的碳水化合物•使用较低的cody prodbord•hyd-cody bodiber of figner infim infim in coby of coby offor infim infim•使用水分般的粘贴式粘贴式粘贴式粘贴式粘贴式胶水材料•粘合剂•使用回收和回收解决方案,例如基础处理和稳定
高血糖通过 PI3Kγ 依赖的缺陷自噬加剧平滑肌泡沫细胞的形成 Labrana H 1* ., Wahart A 1* ., Cormier K 1 ., Solinhac R 1 ., Swiader A 1 ., Mentouri I 1 ., Smirnova N 1 ., Malet N 1 ., Gayral S 1 ., Ramel D 1 ., Auge N 1 **., Laffargue M 1 ** 1 I2MC,法国国家健康与医学研究中心 (INSERM) U1297,法国 *,** 同等贡献
本文所包含的信息符合我们的知识,截至发表之日起,准确和可靠。Borealis不扩展任何保证,也不对本文包含的信息的准确性或完整性作出任何陈述(尤其是第三方未经Borealis验证的任何数据和计算),并且对其使用后果或任何错误的后果不承担任何责任。客户有责任检查和测试我们的产品,以使自己满足于产品对客户的特殊目的的适用性。客户还负责适当,安全和合法的使用,处理和处理我们的产品。此处的任何内容均不得构成任何保证(明示或暗示的适销性,适合特定目的的适用性,符合绩效指标,符合样本或模型,不侵权或其他方式),也没有任何法律或专利的保护。在与第三方材料结合使用的产品中使用的产品,客户有责任获取与第三方材料有关的所有必要信息,并确保与这些材料一起使用时,适用于客户的特殊目的。与其他材料结合使用北方产品,不承担任何责任。本文包含的信息与我们的产品仅与任何第三方材料结合使用时,仅与我们的产品有关。
摘要:具有微米孔的固体泡沫用于不同领域(过滤、3D 细胞培养等),但目前,控制其孔隙水平的泡沫几何形状、内部结构和单分散性以及机械性能仍然是一个挑战。现有的制造此类泡沫的尝试要么速度慢,要么尺寸受限(大于 80 μm)。在这项工作中,通过使用温度调节的微流体工艺,首次创建了具有高度单分散开放孔(PDI 低于 5%)的 3D 固体泡沫,其尺寸范围为 5 至 400 μm,刚度跨越 2 个数量级。这些特性为细胞培养、过滤、光学等领域的激动人心的应用开辟了道路。这里,重点放在光子学上。从数值上看,这些泡沫打开了三维完整光子带隙,临界指数为 2.80,因此与金红石 TiO 2 的使用兼容。在光子学领域,这种结构代表了第一个具有此功能的物理可实现的自组装 FCC(面心立方)结构。
经验支持,1现代财务理论的主要观点是,在股息支付资产中产生资产价格泡沫存在根本困难。本文通过提供稳健的例子经济体来挑战这种观点,在这种经济体中,资产价格泡沫对于平衡存在必要,并将泡沫的出现与经济增长和宽松的财务状况联系起来。生成资产价格气泡的根本困难可以由Spininal Santos和Woodford(1997)泡沫不可能的定理来总结:他们的定理3.3指出,如果总质基的现值是有限的,那么资产的价格是正面供应量或具有有限净额的资产价格或有限的效果。由于现实中的大多数资产都处于正净供应量(例如股票和土地)或具有有限的成熟度(例如债券和期权),以便在现实环境中产生泡沫,因此有必要构建模型,在该模型中,总质量的现值是无限的。除了风格化的重叠世代(OLG)模型外,由于有限的生活,个人最优性和无限的现值可能是一致的,还必须考虑具有金融摩擦的模型。具有足够的财务限制,个人最优化和无限的现值可能是一致的,因为财务限制可以阻止代理资本化捐赠的无限现值。2
成功开发了航空航天可重复使用的发射车辆(RLV),需要实现有效的热保护系统(TPS),以在重新进入阶段内从严重的热载载上保护航天器的完整性。由于需要降低有效载荷运输成本,因此,应用研究被驱动到具有先进的热机械特性的轻质材料。空间TPS通常基于三明治结构,其中核心材料具有热绝缘的主要功能。陶瓷多孔材料,例如碳(C)和碳化硅(SIC)泡沫,代表了在很高温度下低密度和明显的热稳定性,代表了作为结构TPS组件的构成型TPS组件的理想候选者。本文提出了一项联合实验研究,该研究是针对碳式陶瓷泡沫作为三明治设计的核心的联合研究。据报道,商业c和sic-泡沫材料的完整热表征,包括测量热力学的组合应力,温度引起的量大行为和传热特性。尤其是通过a
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。