汇集了来自学术界,行业和政策的专家,该研讨会将讨论如何彻底改变水效率,优化营养成分并改善农业系统的土壤健康。此外,还将探索水和土壤中污染物降解以及碳捕获的创新策略。参与者将对纳米泡,实际应用背后的科学以及显着影响农业生产力和环境可持续性的潜力有全面的了解。除了研讨会外,我们还计划进行一次实地考察,供参与者参观新泽西州的当地室内农场,在那里他们可以了解现代农业技术,包括创新的灌溉系统。这次实地考察定于2025年1月23日或1月25日举行,确切的日期将很快确认。
源自干细胞的细胞外囊泡(EV)正在成为干细胞疗法的另一种方法。成功的电动汽车的冻干可以长期在室温下在室温下方便地存储和分布,从而大大提高了电动汽车治疗剂对患者的可及性。在这项研究中,我们旨在确定适当的冻约剂组成,用于冻干和重建词干细胞衍生的电动汽车。MSC衍生的EV使用不同的浓度以不同的浓度,使用不同的抒情蛋白(例如二甲基磺氧化物,甘露醇,海藻糖和蔗糖)冻干。我们的结果表明,在高浓度下,海藻糖和蔗糖的混合物可以通过富集溶液的无定形相,支持无定形冰的形成,这成功抑制了在石ply粒化过程中缓冲液成分结晶的加速度。冻干和重构的电动汽车对浓度和大小,形态以及蛋白质和RNA含量进行了彻底评估。使用带有人脐静脉内皮细胞的试管形成测定法检查了重构电动汽车的治疗作用。在冻干电动汽车的补液补液后,它们的大多数通用特征都得到了很好的维护,并且其治疗能力恢复到类似于新鲜收集的电动汽车的水平。冻干电动汽车的浓度和形态与新鲜EV组的初始特征直到第30天在室温下的初始特征相似,尽管它们的治疗能力在7天后似乎有所降低。我们的研究提出了适当的乳液保护剂组成,尤其是用于EV冻干,这可以鼓励使用干细胞衍生的EV疗法在健康行业中的应用。
随着围产期护理的持续改善,可行的早产儿的数量正在逐渐增加,以及早产相关疾病的增加,例如坏死性小肠结肠炎,支气管肺发育异常,围产期脑脑损伤,预性脑病,预性过早以及SEPIS。由于早产儿的独特病理生理学,诊断和治疗这些疾病变得尤为具有挑战性,显着影响其生存率和长期生活质量。细胞外囊泡(EV)作为细胞间交流的关键介体,在这些疾病的病理生理学中起着重要的调节作用。由于其生物学特征,电动汽车可以作为早产相关疾病的生物标志物和潜在的治疗剂。本综述总结了电动汽车的生物学特性,它们与早产相关疾病的关系及其诊断和治疗的前景。evs面临临床应用的独特挑战和机会。
概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。
摘要 在过去的二十年中,聚合物囊泡已被广泛研究用于癌症治疗中诊断和治疗剂的输送。聚合物囊泡是稳定的聚合物囊泡,使用不同分子量的两亲嵌段聚合物制备而成。使用高分子量两亲共聚物可以操纵膜特性,从而提高药物输送效率。与脂质体相比,聚合物囊泡更稳定,体内毒性更小。此外,它们能够封装亲水性和疏水性药物,具有显著的生物相容性、坚固性、高胶体稳定性以及简单的配体结合方法,使聚合物囊泡成为癌症治疗中治疗药物输送的有希望的候选材料。本综述重点介绍了聚合物囊泡在癌症治疗和诊断中的应用的最新进展。
简单总结:黑色素瘤仅占人类皮肤癌的 1%,但在一些情况下会导致患者死亡。如今,有不同的全身疗法用于治疗人类黑色素瘤。虽然这些疗法大大延长了患者的寿命,但它们仍然与耐药性有关。细胞外囊泡 (EV) 是参与细胞间通讯的肿瘤细胞释放的微小囊泡,在黑色素瘤的发病机制和进展中起着重要作用。它们在几种癌症的几种抗癌药物耐药机制中起着至关重要的作用,有强烈的迹象表明,黑色素瘤细胞释放的 EV 可能在耐药性的产生中发挥作用,调节对抗癌药物的反应。了解它们的作用将有助于改善黑色素瘤治疗的结果。
聚集诱导发射(AIE)染料是构建发光囊泡的有效方法[12e16]。目前普遍认为,含有AIE基团的分子自组装可以提供适合原位追踪的优异发光性能,不仅克服了传统荧光染料荧光弱的缺点,还可以追踪囊泡在此过程中的整个循环细节,提供基础知识和实践指导。按照适当的方式,聚集状态下的AIE分子发出的明亮荧光可以照亮生物系统或材料系统中不可见的区域,从而使追踪这些系统的状态成为可能[17e21]。在本文中,我们将介绍AIE技术如何与囊泡相结合,以及当AIE遇到囊泡时会发生什么。
摘要:CRISPR / CAS技术近年来已经急剧提高。已经表征了许多具有新属性的不同系统,并且已经设计了众多混合CRISPR / CAS系统,能够修改表观基因组,调节转录和DNA和RNA中正确的突变。但是,CRISPR / CAS系统的实际应用受到缺乏有效的交付工具的严重限制。在这篇评论中,概述了以核糖核蛋白络合物形式开发用于提供CRISPR / CAS的车辆的最新进展。最重要的是,我们强调使用细胞外囊泡(EV)进行CRISPR / CAS递送,并描述其独特的特性:生物相容性,安全性,合理设计的能力以及越过生物障碍的能力。可用的分子工具以可控制的方式将所需蛋白质和 /或RNA货物加载到囊泡中,并塑造电动汽车表面以靶向递送到特定的组织中(例如,使用靶向配体,肽或纳米生物体)。均出现了内源性(CRISPR / CAS的细胞内产生)和电动汽车的外源性(后生产)负载的机会。
患者来源的微泡/AIE 发光原混合系统用于患者来源的异种移植模型中的个性化声动力癌症治疗 朱道明、郑征、索猛、刘泽明、多艳红* 和唐本忠* 朱德博士、多英教授 暨南大学第二临床医学院、南方科技大学第一附属医院、深圳市人民医院放射肿瘤科,深圳 518020,中国。电子邮箱:yanhong.duo@ki.se 郑志博士、唐本忠教授 香港科技大学高等研究院及化学及生物工程系、国家组织修复重建工程研究中心香港分中心化学系,香港九龙清水湾,中国。电子邮件:tangbenz@ust.hk 朱德博士,索明博士 武汉大学物理科学与技术学院电子科学与技术系,武汉 430072,湖北。 刘哲教授 武汉大学中南医院整形外科,武汉 430071,湖北。 电子邮件:6myt@163.com DZ 和 ZZ 对这项工作做出了同等贡献。 关键词:聚集诱导发射,声敏剂,个性化声动力癌症治疗,患者来源的微泡,患者来源的异种移植模型 摘要 声动力治疗 (SDT) 作为一种有效的肿瘤治疗方法,具有深入肿瘤穿透和疗效高的优势。然而,开发有效的声敏剂仍然具有挑战性。基于 AIEgen 的 SDT 从未见过报道,迫切需要开发新型的 AIEgen 活性声敏剂。此外,基于 AIEgen 的治疗诊断系统有望在 PDX 模型上得到验证,以更接近临床。在此,我们构建了第一个基于 AIEgen 的 SDT 系统,并发现 DCPy 在 SDT 中比传统声敏剂具有优势。然后,通过电穿孔制备的患者来源的 MVs/AIEgen 混合系统用于膀胱癌患者来源的异种移植 (PDX) 模型中的个性化 SDT。令人印象深刻的是,AMV 在 PDX 模型上表现出卓越的肿瘤靶向能力和有效的个性化 SDT 治疗,与 PLGA/AIEgens 纳米粒子和细胞系衍生的微囊泡相比,这两者都有显著改善。这项工作提出了基于 AIEgen 的混合系统作为 SDT 声敏剂的第一个例子,并为 AIE 活性声敏剂的设计和癌症的 SDT 治疗提供了新思路,进一步拓展了潜在的临床
摘要:预计热应力会随着全球变暖而加剧,从而引起重大的社会经济影响并威胁人类健康。湿泡体温度(WBT)是评估区域和全球热应激变异性和趋势的有用内分子。但是,欧洲WBT及其潜在机制的变化尚不清楚。使用观测和重新分析数据集,我们在1958年至2021年越过欧洲的夏季WBT表现出了显着的变暖。特别是,在过去的64年中,欧洲夏季WBT已超过1.0 8 C。我们发现,欧洲夏季WBT的增加是由近表面变暖的温度和增加的大气水分含量驱动的。我们确定了欧洲夏季WBT变异性的四种主要模式,并研究了它们与大规模大气循环和海面温度异常的联系。欧洲WBT变异性的第一个主要模式表现出突出的长期变化,主要是由闪lobal波列和同时的海面温度变化驱动的。欧洲WBT变异性的最后两种主要模式主要显示年际变化,表明对大型大气动力学和附近海面温度变化的直接和快速响应。进一步的分析显示了全球变暖和中纬度循环中夏季WBT变化的作用。我们的发现可以增强对欧洲热压力驱动因素的理解,并为区域决策者和气候适应计划提供宝贵的见解。