浏览3 1印度的Kachai柠檬生产,簇,PHM和增值的一般概述1.1简介4 1.2 Kachai Lemon的起源,分布和生产5 1.3品种6 1.4健康效益和营养重要性7 1.5培养,轴承和后货架后的工具和价值在印度的培养和价值添加11 1.6型号Kachai ficme 2 Models 2 Models 2 Models ficeme 2 project and land 21 2.2 Installed capacity of Kachai lemon pickle processing plant 21 2.3 Raw Material requirement for The Unit 21 2.4 Manufacturing Process 22 2.5 Market Demand &supply for kachai lemon pickle 24 2.6 Marketing strategy for Kachai lemon products 25 2.7 Detailed Project Assumptions 25 2.8 Fixed capital Investments 2.8.1 Plants and Machinery 26 2.8.2 Other Costs 27 2.9 Working Capital Requirements 28 2.10 Total Project Cost & means of finances 29 2.11 Manpower需求29 2.12支出,收入和盈利能力分析30 2.13还款时间表31 2.14资产折旧32 2.15项目的财务评估项目33 2.16休息甚至分析34 2.17 PICETAR 36 2.18植物布局37 2.19机械供应商37机械供应商37 37 37 33型号DPR和指南限制型号38模型38 38 38 38 38 38 38 38 38 88
Alperönder1,GülceDavutlar 2,Mehmet Ay 1,FerahCömertInder3 *抽象的鞘氨醇激酶(SPHKS)作为脂质激酶,催化鞘氨醇(SPH)(SPH)促成鞘氨酸1-磷酸盐(S1P)的磷酸化。靶向S1P信号通路是许多人类疾病的重要策略。在此,我们评估了药用植物的主要原型生物活性成分,并用类黄酮化合物进行了虚拟筛查研究,然后对靶向癌症治疗进行了分子对接和分子动力学(MD)模拟。通过Biovia Discovery Studio(DS)确定了计算机ADMET和吸毒结果。分子对接和分子动力学(MD)模拟是通过使用过滤的配体的Glide/SP和Desmond进行的。滑行/SP对接结果显示与Xanthohumol(Xn),8-丙烷纳明蛋白(8-PN)和Neobavaisoflavone对SPHK1的结合亲和力更高。三击在靶向SPHK1的特定氨基酸残基之间显示出强氢结合。在gromacs进行的200 ns MD模拟分析期间,SPHK1-XN和SPHK1-XN和SPHK1-Neobavaisoflavone复合物之间没有显着的结构变化。将Xn-和Neobavaisoflavone-蛋白质络合物的平均值与游离SPHK1进行比较,分别为0.2626 nm,0.2589 nm和0.2508 nm。结果,XN和8-PN和Neobavaisoflavone已被确定为SPHK1的潜在抑制剂候选者,以检查进一步的体外和体内研究。
泡菜是韩国文化中常见的标志性食物,被全球公认为健康食品(Surya 和 Nugroho,2023 年)。2013 年,联合国教科文组织将泡菜制作工艺(kimjang)列入人类非物质文化遗产名录。韩国人均泡菜消费量超过大米消费量(Cha 等人,2023 年)。在韩国文化中,发酵食品起着重要作用,传统发酵是冬季储存蔬菜的主要食品加工技术之一。泡菜富含抗氧化剂、维生素、消化酶和矿物质,具有抗癌、抗糖尿病和抗炎特性(Lee 等人,2016 年)。萝卜 ( Raphanus sativus ) 可用于制作不同形式的泡菜,例如 kkakdugi 泡菜(韩国消费量第二大的泡菜)、chonggak 泡菜和 dongchimi 泡菜(Song 等人,2021 年;Surya 和 Nugroho,2023 年)。萝卜占韩国蔬菜种植总面积的 10%(https://kostat.go.kr)。韩国泡菜在全球的流行度日益提高,也增加了对韩国萝卜的需求。对萝卜可持续种植的需求正在增长。像韩国这样面积较小的国家无法增加农业面积。相反,可以借助育种科学技术培育新的植物性状来提高作物产量。随着测序等技术的发展和完善,基因组时代的育种变得更加复杂。基因组测序和组装成本持续下降的趋势加速了数字化育种方法的采用,以揭示遗传关联(Marks 等人,2021 年;Jeon 等人,2023 年)。已经开发出蔬菜作物品种来抵抗各种环境压力并满足市场对味道、香气和大小等表型的需求。在传统的育种实践中,育种者通过人工表型评估从自然界中随机选择理想的性状。所选品种的单一表型有详尽的记录,但育种者对生物特征谱(如生物和非生物胁迫抗性)的抽象与品种/性状选择并不同时进行。相反,育种者会让选定的品种经历各种交叉事件,以根据种子市场的供求开发新品种。这种方法繁琐且耗时,可以通过快速育种技术(Wanga 等人,2021 年)和基因组选择(Budhlakoti 等人,2022 年)进行改进。具体而言,通过基因组选择进行育种相对有效,而单个作物具有泛基因组,其中包括异质基因组。测序成本的降低正在鼓励植物育种
上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。
材料和方法:将泡菜样品分类为工业(n = 20)和传统(n = 38)生产方法。评估了化学成分,包括咸菜的盐含量和pH。根据制造商的宣言记录了传统方法产生的咸菜的盐含量。标签信息以非生产的泡菜评估。使用桌面pH计进行pH测量。微生物载荷,包括Aci dophilus乳杆菌,Brevis左乳杆菌和甘酸乳杆菌plotarum plantarum plantarum plantarus plantarum plantarus plantarum plantarum plantarum plantarum plantarus plantarus plot液的泡菜计数是在实时PCR设备(德国Rotorgene-Q)中使用Diagen实时PCR套件进行的。使用IBM社会科学统计软件包(SPSS)程序版本22.0进行统计分析。
确定了一种传统的韩国发酵植物食品的jogi(鱼大西洋杂种,微角膜虫)对物理化学成分(例如颜色,有机酸和氨基酸)的物理化学成分的影响。随着发酵的影响,jogi添加的泡菜的颜色变化增加了,但与没有jogi添加的泡菜的对照组相比,很难用肉眼来区分。在所有实验组中减少糖的降低,随着发酵的进行,jogi的Kimchi的值较低。乙酸,柠檬酸,乳酸和乙醇在两种类型的泡菜中高度生产,最重要的是,jogi -baechu -kimchi组比对照组显示出更高的乙酸和乳酸含量。在两种类型的泡菜中,氨基酸的增加和减少相似。但是,在制造后,明显地,明显地,咸味成分天冬氨酸和谷氨酸的检测到高于对照组。随后,随着发酵的进行而趋于减少,但内容高于对照组的含量。上面的结果表明,与物理化学成分相比,JOGI添加对氨基酸(尤其是咸味成分)的含量具有更大的影响。
1. 学生将能够解释渗透的工作原理。 2. 学生将能够解释厌氧发酵如何保存食物。 3. 学生将能够进行对照实验并分析其结果。 (可选)与下一代科学标准 (NGSS) 的关联: 科学与工程实践: - 提出问题和定义问题 - 规划和开展调查 - 分析和解释数据 - 获取、评估和传达信息 学科核心思想: HS-LS1.B:生物的生长和发育 跨学科概念:因果关系 注意: - 根据您的特定房间设置,您可能希望自己准备泡菜的各个部分,或者使用烹饪教室(如果有)。 - 所有参考的食谱、工作表、视频和照片均在附录中提供。