快速发展的现代光通信系统需要小型电光器件,其光学特性需要能够大幅度快速变化。这种纳米级器件可以用作数据存储或片上数据链路的光互连。[1] 在过去的几十年中,基于量子阱结构的电吸收 (EA) 调制器已被提出在高速光网络中发挥特别有前景的作用。[2,3] 利用量子限制斯塔克效应 (QCSE),这些材料的光学特性可以通过沿限制轴的外部电场进行调制,即通过倾斜势阱。由于这种“倾斜”的价带和导带,相关的最低能量电子和空穴波函数将定位在势阱的相对侧,从而导致带隙附近的吸收光谱发生变化。这种场诱导调制的典型特征是波函数之间的重叠积分降低,相关光学跃迁的振荡器强度降低,以及跃迁能量降低,这表现为吸收带边缘红移。[4–6]
相干伊辛机 (CIM) 是一个光学参量振荡器 (OPO) 量子网络,旨在找到伊辛模型的基态。这是一个 NP 难题,与几个重要的最小化问题有关,包括最大割图问题和许多类似的问题。为了提高其潜在性能,我们在高度量子状态下分析了 CIM 的相干耦合策略。为了探索这个极限,我们采用了精确的数值模拟。由于系统固有的复杂性,最大网络规模是有限的。虽然可以使用主方程方法,但对于较大的系统,它们的可扩展性会迅速降低。相反,我们使用蒙特卡洛波函数方法,该方法随着波函数维度而扩展,并使用大量样本。这些模拟涉及超过 $10^{7}$ 维的希尔伯特空间。为了评估成功概率,我们使用正交概率。我们通过使用量子叠加和时变耦合来增强量子效应,展示了通过在低耗散状态下改善模拟时间和成功率来实现量子计算优势的潜力。
摘要:我们考虑具有正宇宙常数并与具有大正中心电荷的共形场论耦合的二维量子引力。我们研究经典和量子层面的宇宙学特性。我们对经典相空间进行了完整的 ADM 分析,揭示了一类弹跳或大爆炸/压缩类型的宇宙学。在量子层面,我们精确地求解了 Wheeler-DeWitt 方程。在半经典极限中,我们将 Wheeler-DeWitt 状态空间与经典相空间联系起来。确定了 Hartle-Hawking 和 Vilenkin 类型的波函数,并发现了弹跳时空的量子版本。我们从类时间刘维尔理论的圆盘路径积分中检索了 Hartle-Hawking 波函数。为此,我们必须在复杂场空间中选择一个特定的轮廓。讨论了大爆炸宇宙学的量子信息内容,并将其与通过二球面引力路径积分计算出的德西特视界熵进行了对比。
摘要:胶体量子井(CQWS),也称为纳米血小板(NPLS),是许多光子应用的令人兴奋的材料系统,包括激光和发光二极管(LED)。尽管已经证明了许多具有高设备性能的成功类型I NPL-LED,但即使使用具有增强的光学特性的合金II NPL,II型NPL也没有完全利用LED应用。在这里,我们介绍了CDSE/CDTE/CDSE CORE/CORCE/CROW/CROWN/CROWN/CROWN/CROWN/CROWS/CROWS/type-II NPLS的开发以及对其光学性质的系统研究,包括它们与传统的核心/皇冠对应物进行了比较。与传统的II型NPL不同,例如CDSE/CDTE,CDTE/CDSE和CDSE/CDSE X TE 1-X Core/Corn/Crown异质结构,在这里,拟议的高级异质结构获得了具有两个高量子产率(QY)的83%和长期荧光量的高量子产率(QY)的好处。这些型II转变通过光学测量进行了实验证实,并使用电子和孔波函数建模在理论上证实。计算研究表明,多冠的NPLS沿CDTE冠提供了更好的分布孔波函数,而电子波函数则在CDSE核心和CDSE冠状层中定位。作为概念验证演示,基于这些多曲的NPL的NPL LED在II型NPL LED中的创纪录的高量子效率(EQE)设计和制造为7.83%。这些发现有望引起NPL异质结构的先进设计,以达到令人着迷的性能水平,尤其是在LED和激光器中。关键字:II型纳米片,胶体量子井,高级异质结构,发光二极管,外部量子效率
量子力学是物理学中的一种理论,它描述了原子和亚原子尺度上物质和能量的行为。将经典力学与量子力学进行比较,可以得出两个主要思想。首先,经典状态描述与量子状态描述有着根本的不同。在经典世界中,系统的状态可以用位置和动量的精确值来描述。另一方面,量子物理学使用波函数来描述状态,波函数可以表示位置和动量等可观测量的测量结果的概率。其次,在经典领域,每个粒子的行为及其与其他粒子的相互作用都是可预测的。更重要的是,如果对粒子进行两次测量,实验结果(如果粒子没有被修改)在整个时间内都是不变的。然而,量子物理学是非直观的。状态和测量之间的关系是不确定的,并且会随着时间而变化。如果对一个粒子进行两次测量,得到的结果可能是随机的和意想不到的。因此,量子力学是非确定性的,这意味着它不能完全精确地描述物理系统的行为(是概率性的)。
摘要 — 本研究全面概述了量子计算硬件,强调了量子比特的创建和测量,这对于推进量子计算及其应用至关重要。量子计算站在技术进步的前沿,提供了前所未有的计算能力,并有可能解决超出传统计算系统能力的复杂问题。受薛定谔猫思想实验的启发,本研究采用了一种实验装置,使观察者能够生成量子力学波函数、获得精确的测量值并分析由此产生的二进制输出状态,该状态由“0”或“1”组成。主要目标是研究二进制组合的生成并确定由此产生的输出状态的概率分布。然后将结果与 IBM 的量子计算机数据进行比较以验证这些发现。最终,这项研究促进了对量子计算及其对技术领域的潜在影响的理解。它旨在扩展知识并为量子计算的进步和创新铺平道路,使不同领域的各种应用受益。索引词 — 量子计算、波函数、叠加
激子 - 结合的电子孔对 - 扮演在光结合相互作用现象中的核心作用,对于从光收集和发电到量子信息处理的广泛应用至关重要。固态光学的长期挑战是实现对激发运动的精确和可扩展的控制。我们提出了一种使用纳米结构的栅极电极来创建2D半导体中激子的潜在景观的技术,从而使纳米级的原位波函数启用了原位波函数。我们的方法形成了各种几何形状(例如量子点,环及其阵列)中激子的静电陷阱。我们显示出空间分离的量子点的独立光谱调整,尽管材料障碍,但仍达到了堕落。由于2D半导体中激子的强光耦合,我们观察到光学反射和光致发光测量中受到约束激发波函数的明确特征。这项工作解锁了在纳米尺度上进行启动激子动力学和相互作用的可能性,对光电设备,拓扑光子学和量子非线性光学元件产生了影响。
量子计算机即将为现代技术带来革命,为科学家提供无与伦比的计算资源。借助叠加原理和纠缠等量子力学现象,这些计算机可以解决某些计算问题,而这些问题即使是最强大的传统超级计算机也无法解决。阻碍这场计算革命的主要挑战之一是对量子比特的精确控制。量子系统极其脆弱,从本质上讲,如果不破坏其量子态,就无法对其进行测量。我编写了一个数值程序来求解时间相关的薛定谔方程,这是一个描述波函数演化的微分方程。我的代码相对于其他求解器的优势在于速度。我使用了图形处理单元 (GPU),这是一种最近才成熟的技术,可以加速高性能计算。硬件加速使我能够在几天内而不是几年内解决复杂的时间演化问题。如此出色的加速使我能够计算半导体器件中单个电子的行为。电子特别有趣,因为它们在现代技术中无处不在,而且是基本的量子粒子。使用我的代码生成的模拟,我跟踪了电子波函数在量子电路中传播时的时间演变。通过动画呈现波函数的演变,我能够直观地看到电子在空间和时间中传播的波函数。这是研究纳米器件中量子粒子行为的出色工具。我的论文重点关注实验室中现成器件的实际建模或可在不久的将来制造的设计。我首先将单个电子建模为量子比特。我给出了最佳量子比特的定义,并列出了操纵电子携带的量子信息所需的操作集。
ADAPT-VQE 是一种用于近期量子计算机上量子化学系统混合量子经典模拟的稳健算法。虽然其迭代过程系统地达到基态能量,但 ADAPT-VQE 的实际实现对局部能量最小值很敏感,导致过度参数化的假设。我们引入了 Overlap-ADAPT-VQE,通过最大化它们与已经捕获一些电子相关性的任何中间目标波函数的重叠来增加波函数。通过避免在散布局部最小值的能量景观中构建假设,Overlap-ADAPT-VQE 产生了超紧凑的假设,适用于高精度初始化新的 ADAPT 程序。对于强相关系统,与 ADAPT-VQE 相比具有显著优势,包括电路深度的大幅节省。由于这种压缩策略也可以用精确的选定配置相互作用 (SCI) 经典目标波函数进行初始化,因此它为更大系统的化学精确模拟铺平了道路,并增强了通过量子计算的力量决定性地超越经典量子化学的希望。
摘要:本文重新审视了电子态的信息源,强调了熵/信息内容的合成度量的必要性,这些度量结合了概率和相位/电流密度的贡献。概率分布反映了波函数模量,并对香农的全局熵和费舍尔的梯度信息产生了经典贡献。由于概率“对流”,分子状态的相位分量同样决定了它们的非经典补充。局部能量概念用于检查平衡、相变状态下的相位均衡。重新审视了波函数模量和相位分量的连续性关系,强调了合成梯度信息的局部源的对流特性,平衡(静止)量子态中的潜在概率电流与水平(“热力学”)相相关。强调了化学过程的能量和合成梯度信息(动能)描述符的等价性。在大集合描述中,反应性标准由系统平均电子能量的群体导数定义。它们的熵类似物由整体梯度信息的相关导数给出,可提供一组等效的反应性指标来描述电荷转移现象。