量子计算正在迅速发展,需要复杂的控制机制来精确操纵量子比特 - 量子位。量子位是量子计算中量子信息的基本单位,精确控制其状态对于实现量子门和执行量子算法至关重要。任意波形发生器 (AWG) 用于产生用户定义的、精确的和定制的 RF 波形来操纵量子位的状态。量子算法是使用量子门序列实现的。AWG 支持创建可定制的脉冲序列,从而实现量子位校准、量子实验和量子电路的实现。为了让用户能够使用量子计算机并实现量子应用程序的开发,需要一个量子软件堆栈。本文介绍了 Qiskit 量子堆栈与 AWG 的集成。
WaveForm ® 椎体间体经过高效设计,优先考虑强度、表面和稳定性。SeaSpine ® 系列 WaveForm 椎体间体完全由重复和连续的波浪状结构制成,可以比其他 3D 打印结构 1 更有效地吸收和分配压缩载荷,具有高孔隙率和降低的刚度,同时不影响强度。与椎体间终板相比,WaveForm 椎体间的孔隙更大,以平衡增强成像特性的需求以及改善移植物流动性和保留性†。为了实现融合,与其他 3D 打印结构 1 相比,WaveForm 的片状结构为骨骼提供了更大的爬行表面积,并且端板孔隙率高达 65%,这已被证明 2 可以最大限度地提高早期稳定性的潜力。
本报告的作者建议使用固体Xe颗粒的梯队作为目标。这个想法解决了来自激光等离子体几毫米的喷嘴的问题。由于高原-rayleigh的表面不稳定性的发展,Pellet-Target发电机中的液体氙气射流分解成液滴。从液体表面蒸发导致液滴冷却,并过渡到固态。以这种方式,形成了一个接一个地移动的固体颗粒流。对于液态氢[4]和Xe [5],已成功证明了与光刻中所需的参数形成具有接近光刻所需的参数的梯队的可能性。该报告介绍了建模和实验活动的结果。
近年来,各个经济部门使用的高压发电技术根据应用领域和性质的不同,面临着许多要求,特别是使用寿命、环境安全、工作效率和能源效率等要求[1-7]。特别是在当今使用的具有光辐射的生物物理装置中,杀虫装置的能源需要高于~3000 V的电压,这对人类来说是安全的。在这种类型的设备中,需要交流220伏电源来产生高压。这不仅增加了能耗,还给它们的使用带来了不便。例如,考虑到在现场使用生物物理设备,将它们连接到网络需要使用与影响范围相等的连接电缆。这反过来又导致了高能耗和不便。用于放大半导体电信号的晶体管的发明使解决此类问题成为可能。如今,这种晶体管广泛应用于各个领域的电信号放大,具有节能、低成本、操作准确等特点[5-9]。在这项研究中,研究人员开发了一个用于产生安全高压的计算机模型
设计方便,坚固的 SS304 外壳,大型填充口、喷射和压力控制。 可转换喷嘴压力。 可调节气溶胶浓度输出,以满足 1-6 个 Laskin 喷嘴的多种应用要求。 允许使用多种试剂。 优质压力表。 易于查看的液位指示。 固定坚固的手柄。 高品质,焊接精良的 SS 支腿。
交流信号源 - 振荡器 - 振荡器的选择 - 巴克豪森标准。音频振荡器(维恩电桥振荡器 - 相移振荡器) - 射频振荡器(考毕兹振荡器 - 哈特利振荡器) - 晶体振荡器。信号发生器 - 扫频发生器 - 脉冲和方波发生器 - 函数发生器 - 衰减器。谐波分析 - 波形频谱 - 使用傅立叶变换器的谐波失真分析。谐波分析仪器 - 谐波失真分析仪。波形分析仪 - 频谱分析仪。传感器 - 传感器的分类 - 传感器的选择 - 应变传感器 - 位移传感器 - 电容式传感器 - 电感式传感器 - 压电传感器 - 温度传感器 - 光电传感器。数据采集系统 - 信号调理电路 - 数模转换器和模数转换器。数据采集系统和计算机控制测量。
我们提出了一种计算效率高的方法来推导量子态最敏感的幺正演化。这使我们能够确定纠缠态在量子传感中的最佳用途,即使在复杂系统中,当正则压缩示例的直觉失效时也是如此。在本文中,我们表明,使用给定量子态可获得的最大灵敏度由量子 Fisher 信息矩阵 (QFIM) 的最大特征值决定,而相应的演化由重合的特征向量唯一确定。由于我们优化了参数编码过程,而不是专注于状态准备协议,因此我们的方案适用于任何量子传感器。该过程通过 QFIM 的特征向量确定具有最佳灵敏度的最大交换可观测量集,从而自然地优化了多参数估计。
Wingd的发动机设计专业知识使其对引擎如何与能量系统的其他组件进行交互以最大程度地提高能源效率的独特见解。电气化技术可以包括轴或前端发电机,电池,电源转换器以及在需要时与岸电界面,风支撑系统,太阳能发电燃料电池甚至在板载碳捕获的情况下集成。Wingd与关键组件的供应商建立了牢固的关系,以实现完整能源系统的准确模拟。
摘要。检测高能激光罢工是军事资产在未来战争中生存的关键。引入激光武器系统要求能够快速检测到这些罢工,而不会通过主动传感技术破坏军装的隐身能力。我们探索了热电发生器(TEG)用作自动的被动传感器来检测此类罢工的使用。使用各种功率等级,波长和光束尺寸的激光器进行实验,以击中2×2 cm 2以不同构型排列的市售TEG。在8.5至509.3 w∕cm 2之间,用808-,1070-和1980 nm激光击中TEG的开路电压和短路电流反应,比较了2至8 mm之间的斑点。teg表面温度表明传感器可以在接近400°C的温度下存活。teg开路电压幅度与净入射激光功率相比,与特定的辐照度水平更加密切,并且线性受到温度变化的限制。开路电压响应以10%至90%的升高时间为〜2至10 s,尽管表面温度未达到等级。以开路电压为传感参数,检测阈值高于标准偏差噪声水平,可以在激光罢工开始后的300毫秒内超过辐照度的辐射水平约为200 w∕cm 2。根据测得的电响应估算了估计高达16 MW的潜在收获功率水平。开发了与实验相对应的多物理有限元模型,以进一步优化轻质,低剖面TEG传感器,以检测高能激光罢工。©2020光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.59.11.117105]
Elite RF 由前摩托罗拉工程领导于 2014 年创立,在设计和制造固态射频功率放大器和高功率微波发生器方面树立了极高的标准,可提供现成的现货和定制设计解决方案。凭借内部工程团队和质量控制的 22,000 平方英尺制造设施,我们的核心优势在于我们对协作工程、稳健设计、高制造质量和准时交付的承诺。我们致力于提高您的运营绩效,旨在为您在快速发展的射频领域提供显著的竞争优势。