1使用标准5G NR命理学,∆ f = 30 kHz [18,sec。4.2],此假设导致t cp = 0。07 / ∆ f = 2。33 µ s。这转化为单静感感应的最大距离为350 m,而在Bistatic感应中,最大距离为700 m。此类参数足以解决车辆ISAC设置中的各种实际情况。
我们通过提供三个替代派生来显示出确切的通用激发波形的存在和特性,以最佳增强定向棘轮传输(在平均速度的意义上)。特别是,它是从引起棘轮普遍性的临界场景以及基于Fokker-Planck方程的方法中得出的。数值实验证实了在受到周期性潜力的驱动的过度阻尼的布朗尼粒子的背景下,存在这种精确的通用激发波形。无论涉及的周期性振动激励的波形如何,Univer-Senital情景都保持不变,但显示有向棘轮传输的增强是最佳的,而这些激发传递的脉冲(在半个周期内的时间积分)是最大的。
3M 718 静电传感器是一种便携式手持式仪器,用于定位和测量静电荷。它可用于定位 ESD 故障区域,是 ESD 控制工程师的宝贵工具。与 718A 空气离子发生器测试套件(单独提供)一起使用,可用于验证和审核空气离子发生器。718 静电传感器由电池供电,具有多种测量功能:范围:可在 0-2 kV 或 0-20 kV 范围内进行测量自动归零:按钮功能可轻松调整为零。无需转动螺丝或刻度盘。保持功能:允许用户“冻结”显示的测量值,以供日后评估自动关机:在 20 分钟不活动后关闭仪器以节省电池电量。
摘要 量子随机数生成器 (QRNG) 基于对单个量子系统执行的自然随机测量结果。在这里,我们展示了使用具有可调分光比的 Sagnac 干涉仪实现的分支路径光子 QRNG。分光比的微调使我们能够最大化生成的随机数序列的熵,并有效地补偿组件中的公差。通过从衰减的电信激光脉冲产生单光子,并使用市售组件,我们能够直接从原始测量数据生成超过 2 GB 的随机数序列,平均熵为 7.99 位/字节。此外,我们的序列通过了 NIST 和 Dieharder 统计测试套件的随机性测试,从而证明了其随机性。我们的方案展示了一种基于动态调整生成的随机序列均匀性的 QRNG 替代设计,这对于依赖于独立实时测试其性能的现代生成器的构建至关重要。
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
1. 项目概要 各种物理系统的研究正在朝着实现实用量子计算机的方向发展。在大多数系统中,一个主要挑战在于实用量子计算所需的高度复杂的量子处理器。另一方面,光学系统可以用紧凑的量子处理器进行实用量子计算。由于这种量子处理器已经得到证实,开发的主要重点是光量子比特的生成。作为光量子比特源,我们提出了量子任意波形发生器 (Q-AWG)。Q-AWG 是一种多功能量子光源,可以输出任意量子态的光和任意脉冲波形。由于其高度的通用性,Q-AWG 可以作为实用光量子计算机的核心光源,并有可能解决在实现实用量子计算机的道路上出现的各种挑战。Q-AWG 确实是一个“终极量子光源”,它的实现将大大加速光量子计算机的发展。
摘要 构建可用的量子计算机的关键在于构建可扩展、可延伸且提供实时响应的经典控制硬件流水线。该流水线的控制处理器部分提供在高级量子编程语言和使用任意波形发生器的低级脉冲生成之间进行映射的功能。在本文中,我们讨论了设计替代方案,重点是支持具有 O(10 2)量子比特的中型量子设备。我们介绍了一种评估量子 ISA 编码量子电路的有效性的方法。我们使用这种方法来评估几个设计点:类 RISC、向量和类 VLIW。我们提出了两种对广泛使用的开放 RISC-V ISA 的量子扩展。鉴于量子硬件流水线的变化速度很快,我们的开源实现为设计空间实验提供了一个良好的起点,同时我们的指标可以独立用于指导设计决策。
手持式静电传感器定位和测量静电电压 静电传感器 718 可帮助在全球高科技市场中竞争的公司避免因静电放电 (ESD) 损坏而造成的昂贵损失,因为它在自己的 ESD 控制程序中发挥着至关重要且宝贵的作用。手持式静电传感器 718 易于使用,旨在测量因静电荷积聚而产生的物体和表面上的静电电压,并可帮助识别 ESD 故障点 - 有助于确保产品可靠性和客户满意度,从而转化为公司利润。另外,当与空气离子发生器测试套件 718A 结合使用时,静电传感器 718 还可用于验证空气离子发生器的运行情况,如 ANSI/ESD SP3.3-2006 中所述。
摘要 - 随着机器学习模型持续集成到关键基础架构中,这些系统针对对抗性攻击的弹性对于所有领域都很重要。本文针对使用Ci-CflowMeter Parser的网络数据集引入了针对网络数据集的对抗性攻击生成器框架。我们对包括FGSMA,JSMA,PGD,C&W等各种突出的对抗攻击进行了全面评估,以评估其在OCCP数据集中的效果。对对抗发电机进行了精心评估,证明了模型性能的重大影响以检测潜在的扰动。结果展示了不同类型的对抗攻击的影响,这有助于未来的防御策略的批判性进步,以保护工业控制系统。索引术语 - 对话攻击,白色框,黑框,eva-sion
完整的实验装置如图 S1 所示。超导量子比特遵循文献 [1] 中描述的“3D transmon”设计。单个铝制约瑟夫森结与蓝宝石衬底上的两个 0.4 x 1 毫米天线相连,嵌入空的铝块腔中,固定在稀释制冷机的 20 mK 基温下。transmon 芯片采用电子束光刻、双角蒸发和氧化工艺制成隧道结。光谱测量得出量子比特频率 ν q = 5 . 19 GHz,与下一个跃迁相差非谐性 α/ 2 π = 160 MHz。测得的弛豫时间为 T 1 = 16 µ s,拉姆齐时间为 T 2 = 10 . 5 µ s。读出和驱动脉冲由微波发生器产生的两个连续微波音调的单边带调制产生,微波发生器分别设置在 ν c 0 + 62 . 5 MHz 和 ν q + 62 . 5 MHz,其中 ν c 0 = 7 . 74 GHz 是高功率下的腔体频率(图 S3.a)。调制是通过将这些连续波与 62.5 MHz 的脉冲正弦信号混合来完成的,后者由 4 通道泰克任意波形发生器的两个不同通道合成。所有源均由原子钟同步。两个脉冲合并并通过输入线发送到腔体的弱耦合输入端口,输入线在稀释制冷机的各个阶段用低温衰减器进行滤波和衰减,确保进入设备的热激发可以忽略不计。在静止阶段 (850 mK) 使用商用 (来自 K&L) 低通净化滤波器,截止频率为 12 GHz,而在基准温度下插入自制低通滤波器,该滤波器由封闭在装有 Eccosorb 的红外密封盒中的微带线组成。请注意,图 S1 中表示为“反射探针”的类似线已用于现场估计腔体输入和输出耦合率 Γ a,b = γ a,b