诺曼·G·布兰森(左)于 1946 年在康涅狄格州丹伯里创立了布兰森仪器公司,旨在将超声波能量用于工业用途。他的第一款产品是 Audigage - 一种无损材料厚度测试仪。1953 年,公司成立了布兰森清洁设备公司,开发超声波清洁技术,满足不断增长的行业需求,从而实现扩张。早期产品仅适用于水基溶液。20 世纪 50 年代末,电子制造业的快速发展带动了溶剂脱脂设备的发展,以满足这一新兴行业的特殊要求。从那时起,布兰森一直是这两种关键清洁技术的领导者。1960 年,布兰森开设了第一家制造工厂,以满足海外对清洁产品的需求。该工厂位于荷兰,至今仍在运营,目前,法国、斯洛伐克、马来西亚、香港、中国和墨西哥的工厂也纷纷加入其中。
20 世纪 70 年代初,美国国家标准局 (NBS) 电力部门的 NAS/NRC 评估小组建议电气仪器部门开始解决与精密电气/电子仪器和测试设备相关的计量问题,其中动态性能考虑变得至关重要。 1974 年 9 月,NBS 盖瑟斯堡工厂举办了一场研讨会,旨在确定与现代电子仪器相关的关键计量需求。研讨会的讨论主题、会议记录、反馈报告和结论均已详细记录在一份 NBS 技术说明 [1] 中。研讨会讨论总结中贯穿的一个总体主题是,NBS 需要为电气/
Chemring Energetics UK的气体发生器范围旨在用于轻质模块化系统,高风险消防源需要自动保护。CEUK能够提供定制设计的实心气体发生器,非常适合快速排出粉末或与需要受控压力输出的液体系统一起使用。气体发生器的基本目的是在所需压力下的气体演化,以在短时间内撤离各种尺寸的火灾抑制缸。Ardeer的Chemring Energetics UK网站已经生产了100多年的能量设备,并以其在该行业中的专业知识而闻名。优势更大的控制压力只有在系统功能并进行控制以提供应用最有效的压力/时间概况时产生压力。体重节省没有燃气瓶,没有压力容器,没有压力调节器空间节省的管道减少或没有维护,没有加压气体来检查增强的性能低操作压力;均匀输出简单安装不安装电源水或电源所需的高度可靠从航空航天技术开发的可靠,没有加压缸的缺乏会减少替代设计中明显的危险
热回收蒸汽发生器 (HRSG) 的环境要求非常严格。即使在极高的温度和高速气体湍流条件下,绝缘材料也必须能够保持其强度和抗腐蚀性。烟囱或锅炉中绝缘材料损坏引起的热点可能会导致强制停机、数天的停机时间和电力供应中断。Thermal Ceramics 在隔热系统的设计和交付方面拥有超过 25 年的经验。我们的产品帮助世界各地的发电厂通过减少能源损失来显著提高效率。我们的材料具有抗化学和物理磨损、腐蚀和极端高温的特性,因此非常适合用于这些严苛的应用。我们的解决方案提供:• 刚性、柔性或面板系统的工程解决方案。• 低导热性、卓越的热效率、高抗压强度、低重量和低
在不久的将来,CSP 电厂有望作为峰值电厂运行。换句话说,它们将频繁启动,以便在电网需要时发电,这样运营商就可以利用 CSP 电厂的可调度性。因此,熔盐蒸汽发生器必须每天启动,而且启动时间必须尽可能短,以最大限度地提高电力生产和安装利润。为此,John Cockerill 开发了一种创新的热交换器概念,这种热交换器具有广泛的操作范围,能够承受高温坡度,并且专为频繁启动而设计。此外,他们非常重视使这些热交换器尽可能可靠,特别是在高温下使用熔盐相关的腐蚀问题方面。最后,得益于其创新设计,John Cockerill 大大降低了泵消耗,并降低了这些热交换器结垢的风险。因此,John Cockerill 在发电厂的整个使用寿命期间优化了能源生产。
• 运营经理:B. CHEYMOL (IR),加速器和离子源极 • 科学协调:A. BILLEBAUD (DR),反应堆物理组 • 客户和网络支持(IRT,合同):M. BAYLAC (IR),加速器和离子源极 • 飞行员和真空专家:S. REY (IE),加速器和离子源极 • 飞行员和电子工程:E. LABUSSIERE (IE),加速器和离子源极
进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
摘要 - 描述了一种利用脉冲信号校准高带宽示波器的系统。快速脉冲示波器校准系统 (FPOCS) 用于确定带宽为 -20 GHz 的数字示波器的阶跃响应参数。该系统可提供测量可追溯性,以符合美国国家标准与技术研究所 (NIS) 维护的标准。它由快速电阶跃发生器硬件、个人计算机 (E) 和计算机以及参考波形 Le、包含阶跃发生器输出信号估计值的数据文件组成。参考波形由 NIST 对阶跃发生器输出信号 (校准阶跃信号) 的先前测量产生。使用 FPOCS 时,校准阶跃信号应用于设备 u n h te4,即示波器采样通道。测量的阶跃波形经过时基误差校正,然后反射系数从 I% 解卷积而来,结果为脉冲、阶跃和频率响应 edhata,以及它们的相关参数(例如过渡持续时间、过渡幅度、-3 dB 带宽)和不确定性。描述了系统及其组件,并给出了初步测试结果
心脏病和糖尿病因眼睛运动异常而被转诊至神经科。在手术后三个月内,他接受了康德疗法,并因甲状腺弥漫性轴突损伤而受到弥散的轴突损伤,并因交通碰撞引起的宫颈椎间盘破裂。最近,由于心脏AR猝死引起的缺氧 - 缺血性脑损伤,该患者表现出异常的眼球运动。神经系统检查表明,他的眼睛处于营养状态,头部固定向左转,四肢瘫痪。学生的大小正常,并且对光反应。角膜和堵嘴反射也是双侧完整的。视频记录术显示,左侧的眼球震颤和小小的下滑,并在患者的角度(从患者的角度来看)扭转组件。去除光不会导致重大变化(图1a,补充视频