,该X射线被确定为术中右肺的肿瘤(CT)扫描(图1A)。主要治疗方法包括右上叶切除术,伴有淋巴结清扫术和部分切除术的第八肋骨切除术(R0)。对标本的检查显示肺多形癌。大约一半的肿瘤是纺锤体细胞癌,其余的是腺癌和大细胞癌。组织病理学评估显示了组织的不同染色模式。纺锤体细胞成分表现出波形蛋白和CK AE1/AE3的阳性染色,P40的阴性染色,CK7和TTF1没有染色。相反,大细胞成分表现出对CK AE1/AE3,CK7,TTF1和波形蛋白负染色的阳性染色。此外,观察到粘膜的局部阳性染色。坏死。肿瘤被诊断为肺的PT2AN1MX(IIB期)多形性癌,表现出主要混合腺癌和大细胞癌的部分混合成分。肿瘤切除两个月后,对照CT扫描发现切除线附近的多个病理纵隔淋巴结和一个不规则的组织区域,表明可能会复发肿瘤过程。根据肿瘤学的决定
组小于对照组的组(p <0.05)。对于接收MDA-MB-453 CSC的小鼠,与对照组相比,lovastatin治疗组的平均肿瘤体积甚至更大(P <0.05)(附加文件4:图S3A)。实验结束时肿瘤重量分析证实了肿瘤体积测量的结果(附加文件4:图S3B)。 进行免疫组织化学染色以评估原位肿瘤上与EMT相关的蛋白质。 我们发现,在从MDA-MB-231 CSC衍生的异种移植肿瘤中,洛伐他汀治疗的组的间充质标记和扭曲的分数低于对照组(p <0.05)。 再次,在MDA-MB-453 CSC肿瘤中,波形蛋白和lovastatin治疗组之间没有统计学差异肿瘤重量分析证实了肿瘤体积测量的结果(附加文件4:图S3B)。进行免疫组织化学染色以评估原位肿瘤上与EMT相关的蛋白质。我们发现,在从MDA-MB-231 CSC衍生的异种移植肿瘤中,洛伐他汀治疗的组的间充质标记和扭曲的分数低于对照组(p <0.05)。再次,在MDA-MB-453 CSC肿瘤中,波形蛋白和lovastatin治疗组之间没有统计学差异
fi g u r e 1重组转化生长因子-β(TGF-β)I型和II受体(TβRI-TβRIII)-FC蛋白抑制TGF-β诱导的上皮上皮 - 间质转化(EMT)和SAS口服癌细胞的迁移。(a,b)(a)上皮细胞标记claudin-1和(b)在未经( - )或TGF-β1(Tβ1),TGF-β2(tgf-β2(tβ2)或TGF-β3(TGF-β3(TGF-β3(tgf-β3)中,tgf-β3(tβ3)(tgf-β3)(tgf-β3)(tgf-β3)(tgf-β3)(2 ng)的SAS细胞中,(tgf-β1)(tgf-β1)(tgf-β1)中的相对表达β信号抑制剂SB431542(10μM)或重组FC蛋白(对照FC,TβRII-FC或TβRI-TβRII-FC)持续72 h。 TGF-β介导的EMT的诱导是由Claudin-1降低50%和波形蛋白表达增加的50%定义的。所有数据均标准化为β-肌动蛋白的表达。n = 3。(c)未经(对照)或TGF-β1,TGF-β2或TGF-β3(2 ng/ml)的细胞进行免疫细胞化学分析,在存在重组FC蛋白(Control-FC,TβRII-FC,TβRII-FC,或TβRII-TβRI-TβRIII-FC)的情况下。染色E-钙粘蛋白(绿色),波形蛋白(红色)和核(蓝色)。在指定条件下培养的细胞的代表性图像。n = 3。(d)在存在控制FC或TβRI-TβRII-FC蛋白的情况下,未经(对照)或TGF-β2(2 ng/ml)处理的SAS细胞的迁移。代表性图像和迁移细胞的定量。n = 3。所有数据均显示为平均值±SD。比例尺:(c)50μm; (d)100μm。统计分析:双向方差分析; * p <0.05; ** p <0.01; *** p <0.001; **** p <0.0001。 NS,并不重要。
含蛋白10(ADAM10)的崩解蛋白和金属蛋白酶结构酶域(ADAM10)在各种癌症相关的生物学事件中起关键作用,例如细胞繁殖,迁移和转移。本研究同时采用TCGA数据库和患者样品来证明ADAM10在非小细胞肺癌(NSCLC)中高度表达,而不同阶段的正常组织。ADAM10表达的增加与整体和无复发生存率的降低呈正相关。在功能方面,ADAM10的过表达促进了肺癌细胞的进展,迁移和侵袭,而ADAM10的下调抑制了这些过程。从机械上讲,ADAM10调节Notch1,MMP9和EMT标记的表达,例如波形蛋白,N-钙粘着蛋白和E-钙粘着蛋白。总体而言,我们的发现表明ADAM10可能是NSCLC的有前途的治疗和预后标记,强调调节其表达的重要性。
检查显示双相模式肿瘤,在胶原性基质中具有异常的梭形区域,以及具有血管增殖和坏死的纤维基质中的神经胶细胞增殖区域,对网状染色呈阳性。免疫组织化学在神经胶质成分中显示出神经胶质蛋白的表达,两者中的波形蛋白阳性。术后时期没有并发症,使语言失语症的逐渐改善没有神经学降低。术后MRI显示出一些术后变化,囊性腔,轻度水肿以及左颞角的增大。然后将患者转介给我们的部门,并使用同心技术进行6 mV光子的技术接受术后放射治疗,并接受30个分数的总剂量为60 Gy(每分分数为2 gy)。辅助温度胺治疗。治疗后的自由疾病期为5个月。然后病人搬到另一个城市,我们无法继续他的跟进。
我们研究了人类结肠癌样品中铝(AL)的存在及其与涉及癌症进展的生物学过程的潜在关联,例如上皮到间充质转变(EMT)和细胞死亡。从接受结肠切除的患者中收集了连续的结肠样品。从每位患者中收集肿瘤和正常粘膜,并进行组织学,超微结构和无组织化学分析。此外,来自两名Al阳性患者的结肠样品接受了多摩变ANA乳胶,包括整个基因组测序和RNA测序(RNASEQ)。莫林染色,用于鉴定原位铝生物积累,显示出在24%的患者肿瘤区域中存在AL。透射电子显微镜和能量分散性X射线微分析证实了Al在与线粒体结肠癌细胞相邻的细胞质内义电义纳米异常中的存在。进行了波形蛋白和核β-蛋白酶的免疫组织化学分析,以突出EMT现象的发生
子宫内膜接受受损是子宫内膜异位症患者(EM)患者不育症的主要因素,但潜在机制尚不清楚。我们的研究旨在研究Kruppel样因子15(KLF15)在子宫内膜接受能力中的作用及其在EM中的调节。与没有EM的正常女性相比,我们观察到EM患者的中分泌上皮子宫内膜细胞的KLF15表达显着降低。确认KLF15在子宫内膜接受性中的作用,我们发现通过用子宫角通过子宫角感染siRNA,在大鼠模型中胚胎植入数量显着降低,胚胎植入数量显着降低。这突出了KLF15作为调节剂接受能力的重要性。此外,通过CHIP-QPCR,我们发现孕酮受体(PR)直接与KLF15启动子区域结合,表明孕酮耐药性可能介导EM患者KLF15表达的降低。此外,我们发现EM患者的中期子宫内膜表现出受损的上皮 - 间质转变(EMT)。敲低KLF15上调的E-钙粘蛋白并下调波形蛋白表达,从而抑制了Ishikawa细胞的侵入性和迁移。 过表达KLF15促进EMT,侵入性和迁移能力,并增加罐子细胞的附着速率。 通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。 我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。敲低KLF15上调的E-钙粘蛋白并下调波形蛋白表达,从而抑制了Ishikawa细胞的侵入性和迁移。过表达KLF15促进EMT,侵入性和迁移能力,并增加罐子细胞的附着速率。通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。 我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。我们的研究揭示了KLF15参与子宫内膜接受能力及其对EMT的下游影响。这些发现提供了对EM患者治疗非受毒性子宫内膜的潜在治疗方法的宝贵见解。
细胞骨架蛋白构成了真核细胞中不同类型结构聚合物的骨架。此类聚合物包括微丝 (MF)、微型细丝、微管 (MT) 和中间细丝 (IF)。每种聚合物的组成都相对均匀。单体细胞骨架蛋白以头对尾的方式结合,形成具有不同几何形状和生物物理特性的长链。这些单体包括肌动蛋白(形成 MF)、肌球蛋白(微型细丝)、微管蛋白 (MT) 和各种 IF 蛋白家族,包括角蛋白、结蛋白、神经胶质纤维酸性蛋白 (GFAP)、周围蛋白、波形蛋白、间蛋白、巢蛋白等(详见 [ 1 ])。MF 和微型细丝使细胞能够适应周围环境。它们在细胞分裂中发挥多种作用,并在生理和病理环境中支持细胞迁移,例如在侵袭和转移期间。微管是必不可少的,因为它们形成了介导细胞分裂过程中遗传物质均匀分离的物理支架,但它们在细胞迁移中的作用有限。IF 赋予细胞机械阻力。
实验设计:每周注射胸腔炎的关节炎(n = 5/组)5周,包括:1)25μg/ml未修饰的波形蛋白(VIM),2)25μg/ml的VIM-MAA,或3)相等的盐水(附加盐水)。小鼠在第六周被牺牲。使用抗MAA,抗CIT和抗VIM抗体,切除肺组织,用毛状组(用于总胶原沉积)或免疫组织化学(IHC)或免疫组织化学(IHC)嵌入,切片和染色。 解离的肺组织通过流式细胞仪进行了分析,以表征免疫细胞浸润。 使用半定量评分评估小鼠进行关节炎的发育,该评分结合了爪子肿胀和发红。 使用Tukey的多重比较测试的单向方差分析进行统计分析。肺组织,用毛状组(用于总胶原沉积)或免疫组织化学(IHC)或免疫组织化学(IHC)嵌入,切片和染色。解离的肺组织通过流式细胞仪进行了分析,以表征免疫细胞浸润。小鼠进行关节炎的发育,该评分结合了爪子肿胀和发红。使用Tukey的多重比较测试的单向方差分析进行统计分析。
摘要 循环肿瘤细胞 (CTC) 是从原发肿瘤脱落、进入血液或体液并扩散到身体其他部位并导致转移的癌细胞。它们的存在和特征与不同类型癌症的进展和不良预后有关。分析 CTC 可以提供有关肿瘤遗传和分子多样性的宝贵信息,这对于个性化治疗至关重要。上皮-间质转化 (EMT) 和逆过程间质-上皮转化 (MET) 在产生和传播 CTC 中起着重要作用。某些蛋白质,如 EpCAM、波形蛋白、CD44 和 TGM2,在调节 EMT 和 MET 方面至关重要,可能是预防转移的治疗的潜在靶点并作为检测标记。已经开发了多种用于检测 CTC 的设备、方法和协议,具有各种应用。CTC 与肿瘤微环境的不同成分相互作用。 CTC 与肿瘤相关巨噬细胞之间的相互作用会促进局部炎症,使癌细胞逃避免疫系统,从而促进其附着和侵袭远处转移部位。因此,靶向和消除 CTC 有望防止转移并改善患者预后。人们正在探索各种方法来减少 CTC 的数量。通过研究和讨论靶向疗法,可以对其在抑制 CTC 扩散从而减少转移方面的潜在效果获得新的见解。此类治疗方法的发展为改善患者预后和阻止疾病进展提供了巨大的潜力。