利用人工智能减轻青少年危险行为:范围界定审查方案 Hamidreza Sadeghsalehi a 和 Hassan Joulaei a,* a 伊朗设拉子医科大学健康研究所卫生政策研究中心 * 通讯作者(joulaei_h@yahoo.com) 青少年特别容易从事暴力、无保护性行为和药物滥用等危险行为,这些行为会对他们的健康和发展产生重大的负面影响。人工智能 (AI) 的最新进展为解决这些行为提供了创新的解决方案,但关于基于 AI 的干预措施的有效性和实施的证据仍然零散。本范围界定审查旨在系统地探索和绘制旨在减少青少年危险行为的基于 AI 的干预措施的文献。本综述将遵循 Arksey 和 O'Malley (2005) 概述并由 Levac、Colquhoun 和 O'Brien (2010) 改进的方法框架,符合 Joanna Briggs 研究所的指导方针。PRISMA 范围界定综述扩展 (PRISMA-ScR) 将指导报告。搜索策略将在 PubMed、Scopus、Web of Science 核心合集、CINAHL、PsycINFO、Cochrane 对照试验中心注册库、Embase、SID 和 Magiran 中执行,重点关注截至 2024 年 6 月以英语和波斯语发表的文章。两名独立审阅者将使用 Rayyan 筛选标题和摘要,然后对相关研究进行全文筛选。数据将使用标准化表格绘制图表,差异将通过讨论或咨询第三位审阅者解决。数据将以描述性方式综合并以表格、图形和图表的形式呈现。关键词:青少年、人工智能、危险行为、范围审查、干预措施
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
本研究的重点是利用脑电图信号为想象词提供一个简单、可扩展、多类的分类器。六个波斯语单词以及静默(或空闲状态)被选为输入类。这些单词可用于控制鼠标/机器人运动或填写简单的计算机表格。本研究的数据集是五名参与者在五次会话中收集的 10 条记录。每条记录重复了 20 次所有单词和静默。特征集由 1 至 32 Hz 频带中 19 个脑电图通道的归一化 1 Hz 分辨率频谱组成。二元 SVM 分类器组的多数规则用于确定特征集的相应类。通过蒙特卡洛交叉验证估计分类器的平均准确度和混淆矩阵。根据记录类间和类内样本的时间差异,定义了三种分类模式。在长时间模式下,即涉及整个数据库中单词的所有实例,单词-沉默的平均准确率约为 58%,单词-单词的平均准确率约为 60%,单词-单词-沉默的平均准确率约为 40%,七类分类(6 个单词+沉默)的平均准确率约为 32%。对于短时间模式,当仅使用相同记录的实例时,准确率分别为 96%、75%、79% 和 55%。最后,在混合时间分类中,每个类别的样本都来自不同的记录,平均准确率最高,约为 97%、97%、92% 和 62%。即使在长时间模式的最坏情况下,这些结果也明显优于随机结果,并且与该领域先前研究报告的最佳结果相当。
Gholamreza Kiany 副教授,塔比亚特莫达雷斯大学,德黑兰,伊朗 摘要 先前对政治和媒体话语中身份建构的研究大多局限于政治家在口头话语中采用的策略。然而,不同的政治人物通过承担不同程度的权力,可能会采用不同的策略来建构他人的身份。本研究旨在调查政治人物在不同文化(英语和波斯语)中采用的语言身份建构策略有何不同。我们随机选择了三组政治人物(演员、记者和研究人员)制作的共 66 篇英语和波斯语文本。然后,按照 Wodak(2001、2007、2009)的批判性话语分析方法,对它们进行了分析,分析内容包括他们为积极/消极地代表他人而提出的策略的质量和数量。批判性话语分析结果以及统计学意义的卡方检验表明,英语和波斯语代理人使用的话语策略类型和频率存在定性/定量差异。波斯语代理人比英语代理人更间接、更隐蔽、更匿名,对其他表征使用更多的隐性策略。这对材料开发和教学计划设计具有启示意义,以提高高级水平学生对其他表征相关话语策略的认识。关键词:身份;话语策略;媒体话语;批判性话语;政治话语 2018 年 7 月 25 日收到 2020 年 1 月 1 日接受