此图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。波束宽度的扩大,加上地面距离增加时目标在波束内的时间增加,相互平衡,使得整个扫描带的分辨率保持不变。这种在整个成像带上实现均匀、精细方位角分辨率的方法称为合成孔径
• 上市时间——我们的小型 GEO 702X 现已上市,可在 3 年内交付。• 技术成熟度——我们的首位 702X GEO 客户并非首位采用者。我们通过 5 年多的研发不断完善设计,目前已有两个飞行计划,其中一个是经过在轨验证的 MEO 星座。• 性能价值——我们的目标是为重量低于 2 公吨的航天器提供最低的 $/bit 报价。• 灵活性——数千条实时形成的波束,动态指向和成形,能够在用户之间共享功率和带宽。任何波束都可以是用户或网关波束。这可以最大限度地提高可用容量,消除能源浪费,并最好地满足不同时间范围内不均匀的需求。
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
该图说明了如何实现这一点。当目标 (A) 首次进入雷达波束 (1) 时,开始记录每个发射脉冲的反向散射回波。随着平台继续向前移动,在目标处于波束内的整个时间内,记录每个脉冲的目标回波。一段时间后,目标离开雷达波束视野 (2) 的点决定了模拟或合成天线 (B) 的长度。远距离目标的波束最宽,照射时间会比近距离物体更长。随着地面距离的增加,波束宽度的扩大,加上目标在波束内的时间增加,相互平衡,从而使整个扫描带的分辨率保持不变。这种在整个成像扫描带上实现均匀、精细的方位角分辨率的方法称为合成孔径
简单来说,天线阵列的不同元件接收相同的信号,其相移取决于元件与信号源之间的距离差。该相移得到补偿,并将产生的信号相加,从而产生朝向卫星的波束。零点也可以朝向干扰源形成。先前对波束成形的研究已经产生了大量知识。Krim 和 Viberg(1996 年)以及 van Veen 和 Buckley(1988 年)都对用于波束成形的自适应算法提供了一般全面的概述。Granados(2000 年)的论文涵盖了专门针对 GNSS 的自适应算法,而 De Lorenzo(2007 年)实施了 STAP(时空自适应处理)算法,目的是满足航空母舰着陆的准确性和完整性要求。
休斯的 JUPITER 航空解决方案是一套集成机载和地面设备和软件的系统,共同为全球运营的商用飞机提供下一代宽带性能。该系统的地面和机载硬件组件在处理能力、封装密度、系统能力和可靠性方面均代表了行业最先进的水平。同样,系统软件融合了高度先进和强大的移动功能,例如增强波束切换、自适应编码和调制以及高级多普勒校正,可在点波束环境中实现从卫星到卫星以及从波束到波束的快速和不间断切换。JUPITER 航空解决方案专为与点波束和宽波束卫星以及 Ka 波段和 Ku 波段配合使用而设计,从头到尾都经过精心设计,可提供一定水平的性能和可靠性,以满足航空公司及其乘客在未来十年的需求。
摘要:基于事件相关电位 (ERP) 的 EEG 视觉脑机接口 (BCI) 的可用性得益于减少 BCI 操作前的校准时间。线性解码模型(例如时空波束形成器模型)可实现最先进的精度。尽管该模型的训练时间通常很短,但它可能需要大量的训练数据才能达到功能性能。因此,BCI 校准会话应该足够长以提供足够的训练数据。这项工作为波束形成器权重引入了两个正则化估计器。第一个估计器使用交叉验证的 L2 正则化。第二个估计器通过假设 Kronecker-Toeplitz 结构协方差来利用有关 EEG 结构的先验信息。使用包含 21 名受试者的 P300 范式记录的 BCI 数据集验证了这些估计器的性能,并将其与原始时空波束形成器和基于黎曼几何的解码器进行了比较。我们的结果表明,引入的估计器在训练数据有限的情况下条件良好,并提高了对未见数据的 ERP 分类准确性。此外,我们表明结构化正则化可以减少训练时间和内存使用量,并提高分类模型的可解释性。
Inmarsat 拥有并运营专为移动服务而设计的全球 Ka 波段卫星网络。GX 拥有三个卫星星座,可实现全球覆盖,第四个卫星星座可在需要时提供额外容量。GX 采用最先进的技术,可实现动态容量分配,让飞机随时随地获得所需的连接。对于乘客而言,这意味着在世界任何地方都能获得始终如一的可靠、高质量的宽带体验。GX 是唯一真正的全球卫星网络,也是唯一采用动态可控波束来解决移动网络运行中不可避免出现的热点问题的卫星网络。GX 还采用双接收终端技术,让飞机能够无缝地从一个波束“切换”到另一个波束。
用于中枢神经/中枢循环系统手术的探头。它是指设计用于放置在手术部位以拍摄局部手术图像的手持式超声换能器组件。它也被称为手术探头或指尖探头。它包括由将电压转换为超声波束的单个或多个元件组成的各种换能器组件的配置。该组件以机械或电子方式确定超声波束的方向、聚焦并检测反射回波。此类别包括用于模式 A、模式 B、模式 M、多普勒、彩色多普勒 (CD) 和双 (组合图像、多普勒或彩色血流) 扫描的超声换能器。作为换能器外壳或外壳组件设计的一部分,可以纳入引入活检针的路线。该设备可重复使用。