摘要在当今和未来的无线通信中,尤其是在5G和6G网络中,机器学习(ML)方法至关重要。可能会带来许多好处,例如增加数据吞吐量,提高安全性,延迟减少以及总体上提高网络效率。此外,为了促进实时情况下大量数据的处理,机器学习用于无线网络中的各种功能。本文旨在探索机器学习的重要性和应用,并在预测无线通信场景中的最佳光束配置的背景下,特别关注经典的增强学习。我们的目标是通过找到最佳光束成形角度来最大程度地减少发射机之间的干扰。为此,部署了射线追踪技术。我们将这项研究视为将数字双(DT)技术集成到网络管理和控制中的一步。在本文中,使用了不同的机器学习方法,并比较了它们的性能。首先,确定了波束形成,最大化通道容量的最有效角度。然后,通过使用这些方法并在验证其准确性后,发现并评估了发射器和接收器数量增加的情况下的最佳天线角度。
AN/SSQ-53 定向频率分析和记录 (DIFAR) 声纳浮标是一种消耗性设备,可以沿两个正交水平轴推导出声粒子速度以及声压。通过此信息,只需一个紧凑型传感器便可计算出低频声源的方位角。估算这些传感器方位角的标准方法是通过传统的波束形成(即添加加权时间序列),但得到的“心形”波束模式不精确、计算成本高,并且对于弱信号容易受到方向性噪声污染。这里演示了一种替代乘法处理方案,该方案计算声信号的“有效强度”以获取噪声场作为时间和频率函数的主要方向性。此信息可以方便地显示为“方位图”,类似于频谱图,但使用颜色来表示方位角而不是强度。来自多个位置的数据证明了这种方法,无需对原始信号进行解复用即可进行计算。Azigram 已用于帮助诊断声纳浮标问题、提高可检测性和估计低信噪比信号的方位。Azigram 还可以增强对定向噪声场中嵌入信号的检测和潜在分类。V C 2019 美国声学学会。https://doi.org/10.1121/1.5114810
本论文提出了一种用于平台导航的和积推理算法,称为多模态 iSAM(增量平滑和映射)。常见的仅高斯似然性具有限制性,需要复杂的前端流程来处理非高斯测量。相反,我们的方法允许前端推迟使用非高斯测量模型的歧义。我们保留了前身 iSAM2 最大乘积算法 [Kaess et al., IJRR 2012] 的非循环贝叶斯树(和增量更新策略)。该方法在贝叶斯(连接)树上传播连续信念,这是非参数因子图的有效符号重构,并渐近近似底层 Chapman-Kolmogorov 方程。我们的方法以最小的近似误差跟踪所有变量边际后验中的主导模式,同时抑制几乎所有低似然模式(以非永久方式)。遵循现有的惯性导航,我们提出了一种新颖的、连续时间的、可追溯校准的惯性里程计残差函数,使用预积分将纯惯性传感器测量无缝地整合到因子图中。我们以因子图为中心(使用饥饿图数据库),将导航元素分离成一个流程生态系统。其中包括实际示例,例如如何推断模糊环路闭合的多模态边际后验信念估计;原始波束形成声学测量;或传统参数似然等。
本论文提出了一种用于平台导航的和积推理算法,称为多模态 iSAM(增量平滑和映射)。常见的仅高斯似然具有限制性,需要复杂的前端流程来处理非高斯测量。相反,我们的方法允许前端推迟使用非高斯测量模型的歧义。我们保留了前身 iSAM2 最大乘积算法 [Kaess et al., IJRR 2012] 的非循环贝叶斯树(和增量更新策略)。该方法在贝叶斯(连接)树上传播连续信念,这是非参数因子图的有效符号重构,并渐近地近似底层 Chapman-Kolmogorov 方程。我们的方法以最小的近似误差跟踪所有变量边际后验中的主导模式,同时抑制几乎所有低似然模式(以非永久方式)。与现有的惯性导航保持一致,我们提出了一种新颖的、连续时间的、可追溯校准的惯性里程计残差函数,使用预积分将纯惯性传感器测量无缝地合并到因子图中。我们围绕因子图(使用饥饿图数据库)集中将导航元素分离成一个流程生态系统。其中包括实际示例,例如如何推断模糊环路闭合的多模态边际后验信念估计;原始波束形成声学测量;或常规参数似然等。
为了概念清晰,图 70.1 中的 STAP 配置将可能集成的孔径分为两部分:最有可能由雷达发射器共享的主孔径,以及用于抑制宽带噪声干扰器 (WNJ) 的空间分布通道辅助阵列。为方便讨论,假设主孔径具有 N c 列元件,列间距等于半波长,每列中的元件组合在一起以产生预先设计的非自适应仰角波束模式。主孔径的大小(就系统所选波长而言)是一个重要的系统参数,通常由系统规范确定,包括所需的发射器功率孔径乘积以及方位角分辨率。典型的孔径尺寸范围从某些短程雷达的几个波长到某些机载预警系统的 60 多个波长。模拟波束形成网络将主孔径的 N c 列组合起来以产生 N s 个接收器通道,这些通道的输出被数字化以供进一步处理。需要注意的是,[ 1 ] 中提出的最早的 STAP 方法,即所谓的“元素空间”方法,是图 70.1 中 N s = N c 的特例。模拟波束形成器的设计会影响
摘要:脑电图 (EEG) 记录有助于解码张开/闭合手部的动作准备。为此,通过波束形成解决逆问题,提取运动皮层中的皮层源信号(相对于运动开始提前 1 秒)。EEG 源时期用作源时间图输入到自定义深度卷积神经网络 (CNN),该神经网络经过训练可执行双向分类任务:手闭合前 (HC) 与静息状态 (RE) 以及手张开前 (HO) 与 RE。虽然深度 CNN 效果很好(HC 与 RE 的准确率高达 89.65+-5.29%,HO 与 RE 的准确率高达 90.50+-5.35%),但在本研究中,我们探索了深度 CNN 的可解释性,以进一步了解手部亚运动准备过程中皮层源的隐藏激活机制。具体来说,进行遮挡敏感性分析以调查哪个皮质区域最好参与分类过程。实验结果显示,受试者的皮质激活具有反复出现的空间模式;特别是靠近纵向裂隙的中央区域以及运动前区和初级运动皮质的右颞区似乎参与程度很高。这些发现鼓励深入研究似乎在手的张开/闭合准备中发挥关键作用的皮质区域。
摘要 - 在下一代集中式或云无线电访问网络(C-RAN),时间和波长分层多路复用的光学网络(TWDM-PON)已被广泛认为是构建移动式fronthaul的有前途的候选人。考虑到C-RAN中严格的带宽效率,潜伏期和成本要求,对于基于TWDM-PON的Fronthaul,非常需要效率的带宽和波长分配方案。尤其是对于启用波束形成的大量多个输入多个输出(MMIMO),需要在TWDM-PON中以带宽和波长资源共同分配附加的无线电资源。在本文中,我们将联合分配概率提出为整数线性编程数学模型,并提出了基于TWDM-PON-基于MMIMO Fronthaul网络的能量结构的基于能量良好的架构的深入增强学习(RL)的联合分配方案。所提出的方案将启发式无线电资源分配算法与基于RL的波长分配模型相结合,以优化在下游方向共同共同优化Fronthaul带宽,无线电资源和波长利用率。仿真结果表明,所提出的方案具有较高的带宽效率和高无线电源造成的,与基准相比,与基准相比,降低了波长的使用,并降低了波长的使用。
可以通过拟合将测量的脑信号(例如脑电图(EEG))与引起它们的刺激的3相关的刺激反应模型2探测感知过程。这些模型还发现了4个控制助听器等设备的控制。通过相关,分类或信息率指标测量的曲目质量指示了模型的值6和设备的实用性。基于规范7相关分析(CCA)的模型达到了超过8个常用线性向前和后向模型的质量拟合。在这里,我们表明9可以使用多种技术进一步提高他们的性能,包括10个自适应波束形成,CCA权重优化以及捕获数据中时间变化和上下文依赖性关系的复发性神经11网络12。我们使用Match-VS不匹配13分类范式证明了这些结果,其中分类器必须确定两个刺激14个ULUS样品中的哪个产生给定的EEG响应,哪些是随机选择的15个刺激样本。此任务捕获了更多其他研究中探讨的更符合16个PLEX听觉注意解码(AAD)任务的基本特征。17新技术的分类错误显着降低,信息传输率提高了18个,这表明这些模型更好地拟合了数据,而这些模型的感知过程反映了数据。这对于改善20个大脑计算机界面(BCI)应用很有用。21
Soli 是一种用于 HCI 的新型手势感应技术,具有许多潜在用例。与电容式感应或基于视觉的感应相比,它旨在克服遮挡、照明和嵌入式感应问题。它还旨在支持 3D、距离和微动作,以实现新颖的交互形式。Soli 结合了硬件架构、信号处理、软件抽象、UX 范例和手势识别的视图,适用于嵌入式硬件和最终产品。Soli 技术与硬件无关,这意味着传感技术可以与不同的雷达芯片配合使用。事实上,该团队已经开发了两个完全集成的雷达芯片(图 1)、一个调频连续波 (FMCW) SiGe 芯片和一个直接序列扩频 (DSSS) CMOS 芯片。有四个接收 (Rx) 和两个发射 (Tx) 天线。Rx 天线间距设计用于最佳波束形成,而 Rx/Tx 间距设计用于获得隔离。雷达原型是一款定制的 57-64 GHz 雷达,配有多个窄波束喇叭天线。在 60 GHz 频段,FCC 将带宽限制为 7 GHz(40 至 82 dBm EIRP),这导致分辨率比 Microsoft Kinect 传感器分辨率低约 2cm。如今,Soli 雷达的中心频率为 60 GHz,波长为 5mm,探测范围为 0.05 -15m,视野为 180 度。alpha 开发套件(图 2)使用 FMCW 版本,带有集成开发板,允许通过 USB 与主机连接。
即使对于服务区域内的人,覆盖范围的可靠性在地理上受到陆地基础设施的限制。然而,降低卫星制造和部署成本已加速了将广阔的星座推向低地轨道(LEO),提供了提高的信号质量,更高的数据速度和更具成本效益的终端硬件。通过利用Leo卫星星座,D2D技术可以在没有地面基础设施的情况下进行通信,克服偏远地区的覆盖范围限制。几项关键的技术创新已经实现了D2D通信。高级波束形成技术[26]允许精确的信号专注于特定地理区域,增强信号质量并减少干扰。软件定义的有效载荷[25]提供动态频谱分配,可实时适应不同的用户需求和监管要求。增强的电力管理系统[33]具有延长卫星寿命并提高了能量效率。组件小型化和终端技术进步使标准智能手机和IoT设备能够直接与卫星通信。这些新事物共同克服了传统的障碍,例如信号衰减和设备兼容性,促进了无接缝的D2D通信并提高了全球连通性。除了技术进步外,监管进步还起着至关重要的作用。FCC拥有高级移动网络运营商 - 卫星网络运营商(MNO-SNO)频谱共享框架,从而可以在陆地和卫星网络之间更好地集成[29]。通过允许卫星操作员从MNOS租赁Spectrum,FCC的框架促进了动态和竞争性的卫星服务,推动MNOS和SNOS之间的和谐,并促进了多租户Leo卫星网络[39]。这样的频谱共享策略可以为最终用户提供更大的灵活性和协调性。表1总结了商业领域中关键D2D部署的状态。我们根据直接到X定义D2D通用的“类型”,其中X采用