作为坦桑尼亚-挪威 REDD+ 监测报告和核查 (MRV) 合作项目的一部分,分别来自 Envisat ASAR 和 ALOS Palsar 的 2007-2011 C 和 L 波段合成孔径雷达 (SAR) 后向散射数据已被处理、分析并用于坦桑尼亚林迪地区 Liwale 区研究区的森林和森林变化制图。国家林业资源监测和评估 (NAFORMA) 项目的森林资源清查地块的土地覆盖观测数据已被用于训练高斯混合模型和 k 均值分类器,这些模型和分类器已被组合起来,以便将研究区域划分为森林、林地和非森林区域。通过对 2007-2011 年 ALOS Palsar 覆盖范围内的 HH 和 HV 极化中的最大后向散射马赛克进行分类,提取了最大森林和林地扩展掩模,并可用于通过过滤非森林地区的变化来有效地绘制年际森林变化图。还分析了 Envisat ASAR APS(交替极化模式),旨在改进基于 ALOS Palsar 的森林/林地/非森林分类。显然,C 波段 SAR 和 L 波段 SAR 的组合提供了有用的信息,可以平滑分类,尤其是增加林地类别,但尚未证实对墙到墙土地类型分类的整体改进。结果的质量评估和验证是使用来自 WorldView、Ikonos 和 RapidEye 以及 NAFORMA 现场观测的非常高分辨率光学数据进行的。
单片微波集成电路 (MMIC) 和发射/接收 (T/R) 模块被广泛应用于有源阵列雷达等系统。小型无人机平台传感器的开发要求重量轻、尺寸紧凑、成本低和可靠。这些要求导致了使用双面厚膜多层基板封装的高度集成 MMIC 的开发。MMIC 所需的组件包括移相器、衰减器、开关、低噪声放大器 (LNA) 和功率放大器。通过切换发射和接收路径中共享的移相器和衰减器可以实现组件的重复使用。每个完整的 T/R 模块都符合与模块集成的相关天线阵列所要求的半波长间隔约束。
轻型车载卫星天线是便携式、自对准卫星通信平台。该系统可以永久安装在车辆和其他可移动工作平台上,或与滑轨支架一起使用并放置在地面或其他表面上。部署非常简单,只需提供电源、连接电缆并按下“搜索”按钮即可,非常适合政府和军事机构使用,
1 .简介。。。。。。。。。。。。。。。。。。。。。。。.3 1.1 .要求语言 ...。 。 。 。 。 。 。 。 . . . . . . div> . . 4 2 . 术语 . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 3 。 动机和用例 . . . . . . 。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . . . . . . . . . 8 5.1 . 进展超越最先进的技术。 . . .。。。。。。。。...... div>..4 2 .术语 ..。。。。。。。。。。。。。。。。。。。。。。。4 3 。动机和用例 ......。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . .。。。。。。。。...... div>5 3.1 .当今的语音通信 ......... div>......5 3.2 .当今的数据通信 ..... < /div>........... div>6 4 .出处和文件 ....。。。。。。。。 < /div>.......7 5 .适用性 ..。。。。。。。。 < /div>...............8 5.1 .进展超越最先进的技术。...。。。。。。8 5.1.1.优先事项。。。。。。。。。。。。。。。。。。。。。8 5.1.2.安全。。。。。。。。。。。。。。。。。。。。。。8 5.1.3。高数据速率。。。。。。。。。。。。。。。。。。。9 5.2.应用程序。。。。。。。。。。。。。。。。。。。。。。。9 5.2.1.空对地多重链路。。。。。。。。。。。。。。。9 5.2.2.LDACS 的空对空扩展。。。。。。。。。。。9 5.2.3。飞行指导。。。。。。。。。。。。。。。。。。。10 5.2.4.航空公司的商务沟通。。。。。。。。。11 5.2.5。LDACS 导航。。。。。。。。。。。。。。。。。.11 6 .对 LDACS 的要求 .......................11 7 .LDACS的特点 ...................13 7.1 .LDACS子网 ...。。。。。。。。。。。。。。。。。13 7.2 。拓扑。。。。。.....................14 7.3 .LDACS 物理层 ...。。。。。。。。。。。。。。。14 7.4 。LDACS 数据链路层。。。。。。。。。。。。。。。。。。15 7.5 。LDACS 移动性。。。。。。。。。。。..........15 8 .可靠性和可用性 ............。。。。15 8.1 。第 2 层。。。。。。。。。。。。。。。。。。。。。。。。。15 8.2.超越第 2 层。。。。。。。。。。。。。。。。。。。。。18 9。协议栈。。。。。。。。。。。。。。。。。。。。。。。18 9.1.MAC 实体服务。。。。。。。。。。。。。。。。。。。19 9.2.DLS 实体服务。。。。。。。。。。。。。。。。。。。21 9.3.VI 服务。。。。。。。。。。。。。。。。。。。。。。。22 9.4.LME 服务。。。。。。。。。。。。。。。。。。。。。。22 9.5.SNP 服务。。。。。。。。。。。。。。。。。。。。。。22 10。。安全注意事项 ...................22 10.1.无线数字航空通信的原因 .......................22 10.2 .LDACS 要求 ...................23 10.3 .LDACS 的安全目标 ..............24 10.4 .LDACS 的安全功能 ............24 10.5 .产生的安全架构细节 ..。。。。。。24
产品描述 20 W GaN SSPA 是一款小巧轻便的放大器,旨在与多频段调制解调器和无线电配对使用 - 既可以独立用于仅传输系统,也可以与其他组件集成以形成双工系统。我们的 20 W GaN SSPA 放大器是一款使用氮化镓 (GaN) 技术构建的多频段双输出固态功率放大器 (SSPA)。我们的 RF 放大器由一个电源、四个独立的固态功率放大器和一个数字控制部分组成。RS-422 接口提供温度监视器、RF 输出功率电平检测和 VSWR 故障状态。RS-422 接口还提供对 RF 功率放大的频段选择和 RF 信号消隐能力的控制。这种多频段 SSPA 可以在射频 (RF) 频谱的 L 波段、S 波段、下 C 波段或上 C 波段中进行选择和操作。我们的 GaN 多频段 SSPA 设计用于多种 L3Harris 产品。
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
自从古列尔莫·马可尼发明无线电报以来,使用无线电波的技术已经彻底改变了我们的日常生活以及整个社会。只需看看人们随身携带的智能手机,就可以看出这项技术如何使我们受益。说到智能手机,5G(第五代移动通信系统)服务于今年在日本启动,研究机构已在制定超越 5G 甚至更先进系统的开发计划。太赫兹波段是一个几乎未开发的频带,现在受到了广泛关注。频率从 100 GHz 到 10 THz(换算成波长为 3 mm 到 30 μm),人们可能会问:我们为什么需要这么高的频率?此外,这个波段是如何研究和标准化使用的?为了寻找这些问题及更多问题的答案,我们采访了太赫兹技术研究中心主任 HOSAKO Iwao 和在同一中心从事标准化工作的小川宏世 (OGAWA Hiroyo)。
根据电磁有限元法的轶事经验,这种复杂性估计为 O(N^2)。因此,理论上,将问题体积减少四倍可将解决时间减少十六倍。一个简单的比较示例是根据所述透镜问题在一个频率(35 GHz)下构建的,在 HFSS 版本 2021R2 中仅进行一次自适应传递,并在一台运行速度为 3.50GHz 的两台 8 核 Intel(R) X eon(r) Gold 6144 处理器的计算机上运行。(由于购买了基本多核 HFSS 许可选项,因此在这些模拟示例中仅使用了四个内核。)四分之一模型产生 47,588 个四面体并在 131 秒内解决,而完整模型产生 181,817 个四面体并在 2143 秒内解决。因此,此示例的速度提高了 16.35 倍。请注意,这些比较的是总运行时间,而不仅仅是矩阵求解时间。
© 作者 2021。本文根据知识共享署名 4.0 国际许可协议授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativeco mmons.org/licenses/by/4.0/ 。
摘要。介绍了光电微波振荡器的设计方案和自由运行状态下的特性研究结果,提出了一种利用锁相环将其与高稳定晶体振荡器信号同步的方法,并分析了光电微波参考振荡器频率不稳定性实验研究的结果。具有光增益和 10 GHz 振荡频率的光电微波参考振荡器在与微波载波 10 kHz 频率偏移处同时提供超低相位噪声(小于 -142 dB Hz -1 )和振荡频谱中的低杂散水平(不超过 -94 dBc)。在这种情况下,振荡频率的温度系数由高稳定晶体振荡器的温度不稳定性决定。