摘要:由钾和一氧化碳制成的凝结相的计算探索导致预测由环状六元的氧化碳阴离子和K +阳离子组成的稳定盐,k n(C 6 O 6)m。在半导体和金属相中,这些系统中的降低状态范围很大,C 6 O 6分子正式降低-2,-3,-3.5和-6。特别关注K 3 C 6 O 6,其中三分激发的激进阴离子在一维中紧密且平衡地堆叠。自由基的等距相互作用极为罕见,通常由于自发的对称性破坏,PEIERLS或JAHN-TELLER失真而不稳定。K 3 C 6 O 6的显着例外是通过相互间隔的多中心键(也称为煎饼键)与大离子拒绝的相结合来解释的。这种引人入胜的相互作用促进了在费米水平上极高的状态密度,并导致我们预测极端金属性,电阻率的负温度系数以及在环境压力条件下的稀有π波段超导率。这些预测振兴了使用金属盐的分子设计来搜索新的有机导体和超导体。
摘要。在为未来的 L 波段被动微波土壤水分卫星任务做准备时,研究人员使用了地面、飞机和卫星传感器。在卫星传感器中,只有一种仪器在 L 波段提供任何遗产:20 世纪 70 年代运行的 Skylab S-194 仪器。在这里找到并恢复了来自 S-194 的数据集。这些 Skylab 任务的数据已在少数应用中进行了分析和报告,但是,这些研究使用了有限的验证,并且仅利用了收集到的部分数据。在本次调查中,我们探索了使用气候模型再分析项目的产品作为辅助或替代验证数据。分析表明,再分析输出不准确,价值有限。使用基于辐射传输的土壤水分检索算法进行的测试与可用于验证的观测结果相匹配。这些结果支持使用这种方法作为工具来了解更广泛的植被条件对土壤水分检索的影响。
SBX 雷达船于 2005 年投入使用,与任何船舶一样,需要定期维护以及结构和推进部件的强制性重新认证。该船的船体和四个推进器需要 5 年的维护周期和认证才能继续运行。推进器的维护应于 2010 年进行;但是,MDA 获得了延期至 2011 年 5 月 31 日。船体认证以及一些额外的定期维护于 2010 年 7 月和 8 月在夏威夷珍珠港-希卡姆联合基地进行。推进器的维护必须在深水(至少 50 英尺)设施进行。一些额外的维护将与推进器工作同时进行。推进器的维护不完成将导致这艘 SBX 雷达船最终被取消认证,并阻止其作为 BMDS 的一部分的重要用途。
摘要:存在不同的可植入天线设计,可以根据使用域和植入空间建立与植入设备的通信。由于其性质和目的,这些天线具有许多针对各种特征的标准,例如带宽,多播行为,辐射模式,增益和特定的吸收率(SAR)。这在没有在这些关键参数的任何一个重要的情况下实现令人满意的结果时提出了挑战。此外,许多现有设计不遵循特定的方法来获得结果。测量这种制造结构的不同参数需要特殊的条件和特殊环境,以模仿应该放置的组织。在此类问题上,使用生物学或合成幻象的使用被广泛用于验证模拟中所述的内容,并且存在许多公式来创建此类幻影,每种幻象都有其优势和缺点。在本文中,由Koch分形结构的第一次迭代得出的微型双带结构旨在用MIC(医疗植入物通信系统)和ISM(工业,科学,科学,医学)2.4 GHz频段操作皮肤下方2 mm的皮肤下方2 mm。设计的目的是从具有某些行为的常用形状中得出结构,同时保持微型化,并轻松设计双束带不可原属的天线。多个频带用于多元化用途,因为诸如MICS频段之类的频段主要用于遥测。与文献中发现的各种结构相比,该结构的特征不仅是其低调的特征,其尺寸为17.2×14.8×0.254毫米3,而且其设计易于设计,谐振频率的独立转移以及对匹配电路的需求不足和匹配销和缩短销(通过)。它表现出令人满意的性能:MICS频段中23 MHz的带宽和ISM 2.4 GHz频段附近的190和70 MHz,并且分别在Azimuth和高架辐射模式中的后一种− 18.66和-17 dBi的频带中测量的增益。为了验证天线在模仿环境中的特性,探索了文献中发现的两个简单的幻影公式并进行了比较,以便在精确性和易于制造方面识别最佳选择。
许多研究表明,EEG 波段,特别是 alpha 和 theta 波段,是潜在有用的认知负荷指标。然而,很少有研究可以证实这一说法。本研究旨在评估和分析 alpha-theta 和 theta-alpha 波段比率对支持创建能够区分自我报告的心理负荷感知的模型的影响。使用原始 EEG 数据集,其中 48 名受试者以多任务 SIMKAP 测试的形式进行静息活动和诱导任务要求练习。波段比率是根据额叶和顶叶电极簇设计的。构建和模型测试是使用从计算的比率随时间提取的频率和时间域的高级独立特征进行的。模型训练的目标特征是从休息和任务需求活动后收集的主观评级中提取的。模型是通过使用逻辑回归、支持向量机和决策树构建的,并使用准确度、召回率、精确度和 f1 分数等性能指标进行评估。结果表明,使用从 alpha-theta 比率和 theta-alpha 比率中提取的高级特征训练的模型具有较高的分类准确率。初步结果还表明,使用逻辑回归和支持向量机训练的模型可以准确地对自我报告的心理工作量感知进行分类。这项研究通过展示从 alpha-theta 和 theta-alpha EEG 频带比率中提取的时间、频谱和统计域中用于区分自我报告的心理工作量感知的信息的丰富性,为知识体系做出了贡献。
参数相关的哈密顿矩阵的特征值在参数空间中形成能带结构。在这样的 N 带系统中,由贝里曲率和量子度量张量组成的量子几何张量 (QGT) 通常通过数值获得的能量特征态计算得出。这里,提出了一种基于特征投影器和(广义)布洛赫矢量的 QGT 替代方法。它比特征态方法提供更多的分析见解。具体而言,仅使用哈密顿矩阵和相应的能带能量,即可获得每个能带的完整 QGT,而无需计算特征态。最显著的是,众所周知的以哈密顿矢量表示的贝里曲率双带公式被推广到任意 N 。使用三带和四带多重费米子模型说明了该形式化,尽管具有相同的能带结构,但它们具有非常不同的几何和拓扑性质。从更广泛的角度来看,这项工作中采用的方法可以用于计算任何物理量或研究任何可观测量的量子动力学,而无需明确构建能量本征态。
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
近年来,全球数据流量已经快速增长,这给现有的光网基构成带来了负担。为了解决这个问题,在部署的光网络中对多波段(MB)传输的开发已成为一种有前途的解决方案,以增加网络容量并满足对更多带宽需求的激增,同时进行/推迟租赁/滚动的额外纤维的需求[1]。然而,随着MB光网络的优势,新的挑战带来了新的挑战。随着可用频谱资源的增加,由于需要考虑多个频带,大量的通道数量明显更大,并且不同频段之间的通道之间的性能差异更大,因此网络设计和操作复杂性会增长。这种增加的复杂性会影响路由和频谱分配(RSA),这是控制网络和维持有效资源的最关键任务之一。传统的RSA算法,例如用于频谱分配的路由和首次拟合(FF)等传统的RSA算法(K -SP),已在商业部署中得到广泛研究和通过。最近,已经考虑使用机器学习(ML)技术来替换/补充传统的RSA算法,尤其是在具有大量源和非简单物理层约束的复杂系统中,如MB光学网络中所存在的那样。深钢筋学习(DRL)[2],[3]可以是RSA的有趣解决方案,因为它的学习能力
1电气和电子工程学院,敦侯赛因大学马来西亚大学,UTHM,BATU PAHAT 86400,马来西亚Johor 2高级传感设备和技术FG,电气和电子工程学院,Tun Hussein Onn University,Tun hussein onn University,uthm电气和电子工程,Nanyang Technological University,新加坡639798,新加坡4 Emtex CTS SDN。bhd。孵化器空间,第2级,研究大楼,F6,Tun Hussein Onn Malaysia,Parit Raja,Batu Pahat 86400,马来西亚Johor 5电信研究与创新(CERTI),电子工程与计算机工程学院(FKEKK),马六甲技术大学(UTEM),MALASYIA,马来西亚Melaka *通信 *通信:Ahmedjamal@utem.edu.edu.my(A.J.A.-G.); zahriladha@utem.edu.my(Z.Z.)†这些作者为这项工作做出了同样的贡献。
摘要:本文提出了一种具有宽调谐范围的超低功耗 K 波段 LC-VCO(压控振荡器)。基于电流复用拓扑,利用动态背栅偏置技术来降低功耗并增加调谐范围。利用该技术,允许使用小尺寸的交叉耦合对,从而降低寄生电容和功耗。所提出的 VCO 采用 SMIC 55 nm 1P7M CMOS 工艺实现,频率调谐范围为 22.2 GHz 至 26.9 GHz,为 19.1%,在 1.2 V 电源下功耗仅为 1.9 mW–2.1 mW,占用核心面积为 0.043 mm 2 。在整个调谐范围内,相位噪声范围从 -107.1 dBC/HZ 到 -101.9 dBc/Hz (1 MHz 偏移),而总谐波失真 (THD) 和输出功率分别达到 -40.6 dB 和 -2.9 dBm。