摘要。在 SiC/Si/SiC 夹层结构中,使用 1550°C 熔化的 Si 研究了 4°off 4H-SiC 表面的重建。尽管系统地获得了与液态 Si 接触的整个区域的宏观阶梯形貌,但使用原始 4H-SiC 晶片时发现台阶呈波浪形。在处理过的表面上进行表面重建时,台阶的规则性和直线性得到显著改善:在重新抛光的表面上,在某些情况下发现台阶是规则和笔直的,而在原生外延层上则始终观察到这种情况。经过 2 小时的重建过程后,获得了最佳的台阶规则性,平均宽度为 ̴ 3-5 µm。将处理面积从 1.44 cm 2 增加到 4 cm 2 不会影响结果,这表明该工艺具有良好的可扩展性。
近一百年前,在另一个世界,拉比阿拉达·德意志在这里的落成典礼上发表了讲话。出席仪式的有波希米亚总督、市长、警察局长和其他高级市政官员、商品交易所总裁和交易所秘书,以及“众多企业家、批发商、律师、新闻界代表等”。一位女华彩女高音带领管风琴和混声合唱团演唱了一首动人的“哈利路亚”。在场的一位拉比点燃了永恒之光。很快,一群身着白衣的男孩和女孩开始沿着过道行进,撒满了银莲花。女人们从上面向他们微笑,他们坐在由波浪形拱门支撑的走廊上,让人想起传说中的东方清真寺和宫殿。
THE GATED HERITAGE 的整体概念表达了这样一种愿望:通过维护该地块独特、宝贵的环境,将其作为港区三田地区的象征,并为其居民提供受保护的生活方式和住宅,打造出令日本引以为傲的住宅。这一开发理念也体现在场地规划和建筑布局上。该地块是港区最大的地块,面积约为 269,100 平方英尺(约 25,000 平方米),停车场全部位于地下,建筑物最多不超过 14 层地上层(包括 PARK MANSION、NORTH HILL、WEST HILL、EAST HILL、SOUTH HILL 和 VILLA 建筑物)。建筑物和居民通过中央花园(仅供居民使用的城市森林)松散地联系在一起,而 CENTER HILL 建筑物的综合布局可以从花园中瞥见,从而创造出低层住宅,同时也考虑到了周围的环境。居民专用的中央花园呈大波浪形,是城市中心的一片森林,形成约 82,882 平方英尺(7,700 平方米)景观的核心,包括现有树木在内,有 130 多种植物。
由薄膜组成的小型电源(如全固态微电池)已引起人们的关注,以确保可穿戴微电子和物联网 (IoT) 设备的自主性[1-3]。然而,这些刚性元件实现的机械变形非常有限[4-8],使它们不适合某些应用,如软电子、生物医学贴片,技术挑战在于设计出具有高电化学性能和先进机械性能的储能装置,以防止裂纹引起的变形和随后的电接触损失。因此,已经提出了几种开发柔性微电池的方法来,例如纸状结构[9-12]、海绵/多孔结构[13-15]和纺织电池[16-20]。由于这些设计的可扩展能力仍然很差,据报道,其他配置可以增加微电池的可扩展性,包括纤维形[21]、3D 多孔海绵[22、23]、折纸[24]、波浪形[25]、拱形电极[26]、蜂窝结构[27]和由螺旋弹簧形成的蛇形[28]。为了防止在拉伸应变下出现开裂问题,蛇形金属互连体被用于在薄膜电极之间建立可拉伸的电接触[29]。然而,对于这种桥岛电池设计,大部分表面需要用于连接,只有 28% 的基底被活性材料占据。
波状模式在生命体中普遍存在,包括肠道蠕动[1]、蠕虫类生物的波动性运动[2]或心动周期[3]等日常现象,以及纤毛和鞭毛跳动[4]、基因振荡[5]或反应扩散模式[6]等微观波。这些模式的功能各不相同,但值得注意的是,它们往往与运输或运动直接相关。每个系统都有不同的振荡特征,例如体形[7]或分子浓度[8],但所有系统都由一组有限的波参数所支配——波长、振幅和频率。此外,参数选择受到物理或生物约束的限制。在给定约束的情况下,生命系统会使用哪些策略来实现波的功能?环境变化对生命系统提出了挑战,要求它们在有限的波参数下改变波的动力学,同时还要保持在波的约束范围内。例如,线虫秀丽隐杆线虫根据环境的粘弹性,通过调节其波浪形身体的波动波长、振幅和频率来改变其运动方式[9]。然而,这种适应性与波的能量成本的变化相伴而生,而这往往是生命的最大限制[10,11]。虽然正弦波形提供的可调整参数很少,但一些生命系统却使用波的叠加。例如人类肠道的蠕动收缩[12]或人类精子的鞭毛跳动[13]。多种波的叠加可以调节总波形,从而增加
尼日利亚拥有多种自然资源,其中最知名的资源之一是原油。众所周知,该国是非洲第二大原油生产国,也是世界第六大原油生产国。这意味着这种自然资源的产出具有商业规模,并且在该国具有很高的价值。上图 3.3 显示了 1981 年至 2021 年该国原油的价值,从中可以看出,原油为该国带来了最高水平的收入。从图中我们可以看出,原油的流入量一直呈波浪形波动。截至 1981 年,该国在国际市场上开采和交易的原油价值为 4,977.42 奈拉,但后来在 1983 年降至 4,052.98 奈拉。此后,原油产量不断增加,直到 1990 年首次达到峰值 6,831.77 奈拉,随后在 2005 年再次达到峰值 9,294.05 奈拉。从那时起,尼日利亚经济中的石油产出价值一直在下降,目前来自这种自然资源的流入为 5,239.05 奈拉。从上面的趋势来看,趋势线显示尼日利亚原油贸易的价值一直呈上升趋势。政府和其他相关机构的贡献必须偏高,但需要进行适当的检查,以确保自然资源的产出处于高位,而不是不断波动。尼日利亚煤炭开采趋势
现有的大多数声学超材料依赖于具有固定配置的架构结构,因此,一旦结构制成,其属性就无法进行调制。新兴的主动声学超材料为按需切换属性状态提供了有希望的机会;然而,它们通常需要束缚负载,例如机械压缩或气动驱动。使用不受束缚的物理刺激来主动切换声学超材料的属性状态仍未得到很大程度上的探索。在这里,受鲨鱼皮小齿的启发,我们提出了一类主动声学超材料,其配置可以通过不受束缚的磁场按需切换,从而实现声学传输、波导、逻辑运算和互易性的主动切换。关键机制依赖于磁可变形米氏谐振器柱 (MRP) 阵列,这些阵列可以在垂直和弯曲状态之间调整,分别对应于声学禁止和传导。 MRP 由磁活性弹性体制成,具有波浪形空气通道,可在设计的频率范围内实现人工米氏共振。米氏共振会诱发声学带隙,当柱子被足够大的磁场选择性弯曲时,声学带隙会闭合。这些磁活性 MRP 还可用于设计刺激控制的可重构声学开关、逻辑门和二极管。本范例能够创建第一代不受束缚的刺激诱导的主动声学元设备,可能具有广泛的工程应用,包括从噪声控制和音频调制到声波伪装。
1.1生物多样性是我们周围野生动植物的多样性。它包括动物,植物,真菌,细菌和其他微生物,物种内的遗传变异以及栖息地和生态系统的种类。1.2《 2004年自然保护(苏格兰)法》在苏格兰的所有公共机构中承担责任,以便在执行其职能时进一步保护生物多样性。2011年《野生动植物与自然环境(苏格兰)法》还要求苏格兰的所有公共机构每三年就他们为履行这一生物多样性义务采取的行动提供公开可用的报告。1.3本报告规定了设得兰群岛理事会(“理事会”)如何遵守2021年1月1日至2023年12月31日的生物多样性义务。今年的格式符合苏格兰政府的“一级组织”的新模板,该模板是拥有或管理土地,规范土地使用或承担与生物多样性有关的责任并包括理事会的公共机构。1.4设得兰群岛包括100多个岛屿,从北到南约110公里(70英里),有15个居住。设得兰群岛位于爱丁堡以北477公里处的59°至61°N之间,北极圆圈仅644公里。设得兰群岛群岛的海岸线约为2700公里,至2468公里。设得兰群岛的气候温和的平均温度高于其纬度,这是由于北大西洋漂移(或海湾流)的变暖作用所表明的。降雨量相对较低,平均每年仅1200mm,这不到苏格兰西高地所经历的降雨量的一半。设得兰群岛气候的最重要特征是平均温度的相对狭窄范围以及风的恒定变化和力量。1.5设得兰群岛的景观已被雨,风,冰和波浪形成了数百万年的数百万年,其景观的基础是英国最复杂和最多样化的地质。设得兰群岛(Shetland)拥有苏格兰最古老的岩石,在过去的几百万年中,河流,冰川和大海已经从这种多样的地质学中雕刻了一条深海地壳和许多不寻常的矿物质。主要的地貌从冰河时代之前就可以生存,尤其是罗纳斯山,而数百个lo骨,声音和声音的证据则在整个小岛上轻轻地扫荡冰川侵蚀。设得兰群岛的外海岸展示了世界上一些最壮观的悬崖风景,而她的内海岸则散布着无数的沙滩和艾尔斯。1.6这种地质学和地貌的丰富性是使设得如此特别的自然栖息地和人类历史层次的基础,并承认这种杰出的地质遗产设得兰群岛已包含在联合国教科文组织全球地理公园网络中。1.7设得兰群岛的生物多样性在本地,国际和国际上非常重要,以下是一些重要的生物多样性利益:
特斯拉的电池技术享有盛誉,2013 年特斯拉 Model S 被 Motor Trend 评为“年度最佳汽车”。这一成就可以归因于其更长的续航里程、更快的加速和令人眼花缭乱的速度,所有这些都是由其电力电子设备和电池系统实现的。在本文中,我们将深入探讨特斯拉汽车中使用的电池系统的细节。具体来说,我们将重点介绍电池组,并涉及其他重要主题,例如机械或热规格、电气特性和特征、电池模块效率和保护功能。电动汽车 (EV) 电池系统是其主要的能量存储系统,主要由电池组成。设计电动汽车的电池系统需要多个领域的知识,包括电气工程、机械工程、热工程、材料科学等。特斯拉电池组的一个关键特性是其高效率、可靠性和安全性,使其成为高度模块化的设计。每个模块可以串联以产生所需的电压输出。特斯拉 Model S 电池组的电压约为 400 伏。特斯拉电池组的一个显著例子是 Model S P85 中的电池组,其容量为 90 kWh,重量超过 530 公斤。该电池组包含 16 个模块,由 7104 个独立电池组成。中央母线在将每个电池模块连接到接触器方面起着至关重要的作用,接触器为前后电动机供电。由于每个模块约为 5.5 kWh,而 Model S P85 的电池组中有 16 个这样的模块,因此它实际上相当于一个 84kWh 模块。特斯拉在其电池组中使用锂离子电池。每个电池都有不同的尺寸、形状和内部化学性质。所用电池的具体类型取决于所制造的型号;例如,特斯拉的 Model S 和 X 变体使用松下制造的 18650 锂离子电池。这些电池的尺寸是一个关键信息,因为它表明了它们的大小和形状。每个 18650 电芯直径为 18 毫米,高为 65 毫米,其命名法可以洞悉其尺寸和内部结构。电芯以串联和并联连接的方式排列,从而形成一个模块。电池组的设计和所用电芯类型会显著影响汽车的整体性能。特斯拉 Model S 电池组:技术特性详细分析特斯拉的电池组(用于 Model S)由松下与特斯拉合作开发,专为电动汽车 (EV) 应用而设计。该电芯的主要特性如下:| 参数 | 规格 | | --- | --- | | 容量 | 3.4 Ah | | 电芯能量 | 12.4Wh | | 标称电压 | 3.66 V | | 体积能量密度 | 755 Wh/L | | 重量能量密度 | 254Wh/Kg | | 内阻 | 30m Ohm | | 电芯质量 | 49g | | 电芯体积 | 0。0165L | 特斯拉 Model S 电池组由多个称为模块的较小电池组成,每个模块采用 6S 74P 配置。这意味着六个电池串联连接,每个系列都有 74 个电池并联连接。每个模块的额定连续电流为 500A,峰值电流为 750Amps。电池组采用液体冷却来维持其温度并防止过热,过热可能导致热失控和火灾危险。冷却系统使用热交换器管道,该管道将冷却液输送到模块内部。 ### 引线键合技术的优势 特斯拉 Model S 电池组中使用的引线键合技术有几个优点: * 连接过程中不会向电池引入热量。 * 导线充当安全保险丝,在电池发生故障时提高整个系统的安全性。 * 它提高了可制造性。 ### 引线键合技术的缺点 但是,这种技术也有一些缺点: * 由于增加了导线,它增加了电阻。 * 它会在系统中产生热量,从而降低运行效率。 * 电池模块的规格如下:| 参数 | 规格 | | --- | --- | | 标称电压(电池模块) | 22.8V/模块 | | 充电截止电压(电池模块) | 25.2V/模块 | | 放电截止电压(电池模块) | 19.8/模块 | | 最大放电电流(10 秒) | 750 安培 | | 高度 | 3.1 英寸 | | 宽度 | 11.9 英寸 | | 长度 | 26.2 英寸 | | 重量 | 55 磅 | 热管理系统是一项关键的安全功能,它通过去除电池组内部的热量来确保电池组的温度保持在一定阈值内。### 图片参考本文中的一些图片取自 EV Tech Explained,这是一个提供深入解释电动汽车技术的频道。特斯拉电池组的关键在于将各个电池彼此隔离。在弯道处,Kapton 胶带可确保最佳绝缘效果。水乙二醇溶液用作冷却剂,当冷却剂流过电池组时,温度会升高。下图显示了高强度测试后电池模块内不同点的温度波动。蓝线表示冷却剂入口,红线表示出口。图中还显示了最大和最小电池温度。测试最初设置为 20°C,涉及 250 安培充电和放电循环。如图所示,模块之间存在低温偏差。保持相似的温度至关重要,因为它会影响内部电阻和整体电池组特性。冷却剂管的波浪形设计增加了表面积和封装效率。电池组本身作为结构构件,位于汽车底部。它为车辆提供刚性和强度,降低重心并改善平衡性和稳定性。每个凹槽可容纳一个电池模块,纵向构件可加强底盘的抗冲击和侧弯能力。内部构件为模块放置创建网格,同时提高基础强度和物理刚度。如果发生火灾,它们会将模块彼此隔离。下图显示了所有 16 个模块的放置位置。高压母线连接在上方,红点表示正极连接,黑色表示负极连接。母线由厚铜镀锡板制成。电池管理系统 (BMS) 对于安全、监控过充、过放、充电状态、放电状态、温度等至关重要。下图显示了基于德州仪器 bq76PL536A-Q1 3 至 6 串联锂离子电池监控器和二次保护的特斯拉 Model-S BMS。BMS 集成到每个模块中,监控电池寿命、温度和其他因素。特斯拉 Model S 的电池监控系统 (BMS) 通过充电放电循环监控电池,并使用 SPI 与其他串联 BMS 模块进行数据通信。每个模块的 BMS 都充当从属设备,通过隔离屏障与主 BMS 通信,主 BMS 控制主接触器并通过 CAN 总线与 ECU 和充电器通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可以找到,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。通过隔离屏障与控制主接触器的主 BMS 进行通信,并通过 CAN 总线与 ECU 和充电器进行通信。使用连接到并联连接板的电线测量电池电压。假设 BMS 图片中每个串联连接的 6 个监控 IC 来自 TI,可以菊花链连接一条通信线路,可能是由博世开发的,该系统的复杂性和工程工作量是显著的,特别是在设计模块和电池组时,它们也用于结构目的,增强了车辆的稳定性和机动性。使用的高质量电池有助于满足对二次使用的需求,由于特斯拉提供的信息在互联网上可用,因此很难验证它。