执行摘要 波浪能有可能为英国提供重要的可再生能源和经济增长来源,并为英国政府的气候变化目标做出贡献 [1]。英国拥有必要的基础设施、市场、技术、法律和法规,通过关键的战略干预,波浪能行业可以取得成功,为英国带来显著利益。为了实现英国 2050 年的净零排放目标,我们需要多样化的可再生能源;波浪能将成为这一结构的重要组成部分,并为平衡电网的能源系统带来宝贵益处。英国可利用的波浪资源每年可提供 40-50 TWh 的电网电力,满足英国目前电力需求的约 15%,到 2050 年装机容量将达到 22GW [2]。波浪能是少数几个由英国主导的技术行业之一,它推动了我们的低碳经济发展,并且具有显著的英国成分(据估计,波浪能产业可以在国内市场确保约 80% 的英国成分 [2])。该资源直接映射到脆弱的沿海社区,对社区认同产生重大影响,带来经济效益,创造高价值就业和经济增长。到 2040 年,波浪能预计将新增 8,100 个就业岗位 [3],行业支持将实现 6:1 的 GVA 效益比 [2]。此外,波浪能是英国丰富的本地能源资源,它与需求完美匹配,并提供供应链基础设施的安全保障。作为早期的领导者,英国波浪能行业从各种原型的开发和部署中积累了丰富的经验、专业知识和知识,并拥有强大的学术和工业界社区。然而,波浪能的发展必须迅速加速,才能在 2050 年前实现其对英国净零排放目标的潜在贡献。波浪能路线图列出了通过有针对性的技术开发和支持机制采取的合理步骤,这些机制旨在鼓励包容性、协作和共享,从而实现 2035 年 90 英镑/兆瓦时的平准化能源成本 (LCoE) 和 2050 年 22 吉瓦的装机容量的里程碑。这种技术推动应辅以市场拉动机制,随着技术的验证和市场开始发展,市场拉动机制会增加,然后随着市场的成熟和自我维持而缩小。实现波浪能技术单位成本的逐步降低是解锁进一步投资和发展的基础。路线图的早期阶段解决了这个问题,重点是波浪能转换器 (WEC) 技术的设计和验证,以证明在降低单位成本的情况下可用性和生存性。这可以通过设计创新和在现有 WEC 或新型 WEC 概念中使用替代组件技术来实现。第一步是进行有针对性的研究,以证明其生存能力和显著的成本降低,然后是展示试点 WEC 农场的可行性。尽管波浪能对净零排放目标的贡献主要集中在公用事业规模,但波浪能的利基市场发展迅速,被视为重要的垫脚石和有效途径,可以展示将波浪能与其他可再生能源一起整合到能源系统中的好处。在这里,利基应用与公用事业规模的 WEC 设计同时进行。随着海上波浪能示范和部署的数量增加,跨学科研究的目标是提高对与海洋生态和环境相互作用的理解,实现影响评估的成本降低,并简化政策、规划和同意。随着部署的增加,利用其他部门技术转让的机会也将增加,从而降低 LCoE 并降低运营管理、维护和安全方面的风险。从 2040 年起,大规模部署波浪能将带来最显著的 LCoE 降低,研究和创新将继续并行,以进一步提高性能并降低成本。波浪能在全球具有巨大的潜力,通过战略投资,波浪能不仅可以成为我们未来可再生能源结构的重要贡献者,还可以成为英国一个利润丰厚的出口市场。
波浪般的,玻色粒暗物质候选者(如轴和暗光子)可以使用称为卤素菌的微波腔检测到。传统上,卤素由在TM 010模式下运行的可调铜腔组成,但欧姆损失限制了其性能。相比之下,超导射频(SRF)腔可以达到约10 10的质量因子,也许比铜腔好5个数量级,从而导致更敏感的暗物质检测器。在本文中,我们首先得出了吊带镜实验的扫描速率与负载的质量因子Q L成正比,即使腔带宽比暗物质晕线线窄得多。然后,我们使用非偏高的超高质量SRF腔进行了概念验证搜索。我们排除了深色光子暗物质,具有χ> 1的动力学混合强度。5×10 - 16对于M A0¼5的深色光子质量。35μEV,几乎通过一个数量级获得了最深的范围排除在波浪状的深色光子上。
这是一种分析方法,其中,沿船舶长度方向切开的每个横截面都计算船舶移动时周围流体作用于船舶的流体力,然后将每个横截面的流体力在纵向上积分,以确定作用于整个船舶的流体力。
然后,飞机在停机坪上被一架接一架地拖出堵塞区域,以便执行必要的 GPS 操作,以便能够自行定位并起飞。乘客必须乘坐巴士前往飞机。这些技术和人为操作导致航班延误和机场平台呼叫饱和! 6 号和 7 号停车场则闲置且空无一人。根据要求,机场安全部门证实了飞行员的证词,并实际检测到 GPS 信号的严重干扰,精确地为 L1 频率(1,575.42 MHz),正如 ANFR 民航总局 (DGAC) 所解释的那样,我们迅速联系了。从上午 10 点 30 分开始,在通知南特高等法院检察官后,ANFR 东日地区服务局的两名授权宣誓特工在机场 6 号和 7 号飞机停车场附近进行了干预。他们使用先进的测量设备,注意到 GPS 干扰机发出的信号特征。现在是要回到源头的问题了!
摘要 本研究重新审视了单自由度波浪能转换器的理论极限。本文考虑了海洋能系统任务 10 波浪能转换器建模和验证工作中使用的浮球进行分析。推导出解析方程来确定运动幅度、时间平均功率和动力输出 (PTO) 力的界限。研究发现一个独特的结果,即波浪能转换器吸收的时间平均功率可以仅由惯性特性和辐射流体动力学系数来定义。此外,还推导出 PTO 力幅的独特表达式,当使用电阻控制来最大化发电量时,该表达式提供了上限和下限。对于复共轭控制,这个表达式只能提供下限,因为理论上没有上限。这些界限用于比较浮球利用波动或升沉运动提取能量时的性能。分析表明,由于每种振荡模式的流体动力学系数不同,因此会存在不同的频率范围,从而提供更好的能量捕获效率。研究了运动约束对功率吸收的影响,同时还利用了非理想的动力输出,发现可以减少与双向能量流相关的损失。计算非理想 PTO 时间平均功率的表达式由机械电效率和 PTO 弹簧与阻尼系数之比修改。PTO
抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
• 充分利用AI,无需工人调整设备,提高制造工序的生产效率。特点1:高速推理:开发了AI控制技术,可与FA设备控制并行进行高速推理。特点2 :环境适应:学习运转过程中的状态量,适应不断变化的加工环境。特点三:高可靠性:对推理结果的可靠性进行指标化,实现高可靠的AI控制技术。
感谢联合国教科文组织世界科学知识与技术伦理委员会(COMEST)成员编写的《关于人工智能伦理可能的标准制定文书的初步研究》,以及特设专家组成员编写的《人工智能伦理建议书》初稿,3