申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
摘要:环境保护的需求推动了可再生能源的大规模引入。尽管风能和太阳能是目前最成熟的发电技术,但波浪能每年仍有巨大的能源潜力尚未开发。事实上,目前还没有开发出用于波浪能转换的领先设备。因此,未来波浪能的开发将与特定的配电和输电基础设施密切相关,由于波浪能的随机性,这些基础设施必须满足高要求才能保证电网的安全性和稳定性。为此,本文介绍了一种基于公共直流母线拓扑的电气架构模型,其中包括由锂离子电池和飞轮与波浪能转换器耦合组成的混合储能系统 (HESS)。具体来说,这项研究工作旨在研究在特定的压力生产条件下,HESS 在公共耦合点 (PCC) 引入的电压和电流波形频率以及瞬态行为方面的有益影响。具体而言,在定义的模拟场景中,结果表明,PCC 处的电压波频率峰值降低了 64% 至 80%,与没有存储的情况下相比,HESS 的稳定速度更快,在更短的时间内(-10% 至 -42%)达到设定值(50 Hz)。因此,在波浪能转换器中集成 HESS 可以大大减少与间歇性和波动性波浪生产有关的主电网安全性和稳定性问题,从而显著提高对可再生能源电力预期增长份额的容忍度。
摘要:海上风能和波浪能等可再生能源资源对环境友好且无处不在。与使用单个资源相比,混合海上风浪能系统产生的能源形式更可持续,不仅环保,而且经济高效。本文的目的是详细回顾混合海上风浪能的联合发电技术。本综述论文的拟议领域是基于功率转换技术、响应耦合、联合发电和互补发电的控制方案以及共置和集成转换系统。本文旨在提供系统的综述,以涵盖新型混合海上风浪能 (HOWWE) 系统的最新研究和开发。当前的混合风浪能结构由于其设计和 AC-DC-AC 功率转换而缺乏效率,需要通过应用先进的控制策略进行改进。因此,使用不同的功率转换技术和控制系统方法,可以改进 HOWWE 结构,并将其转移到其他混合模型,例如混合太阳能和风能。本文回顾了最先进的 HOWWE 系统。对每种方法进行严格分析,以评估开发 HOWWE 系统的最佳组合。
人们认为,海山通过非稳定尾流过程和产生内波来促进海洋混合,内波从海山传播出去,然后断裂。对于均匀正压流 U 中的理想孤立海山(特征宽度为 D 和高度为 H ),研究了这些过程的相对重要性。使用一系列科里奥利参数 f 和浮力频率 N,以便考虑低弗劳德数( U / NH )和低罗斯贝数( U / fD )的宽参数空间。结果表明,在这一参数空间范围内,涡旋过程在能量上主导内波能量通量。专门研究了内波场,将其划分为稳定背风波和非稳定尾流产生的波。结果发现,现有的分析理论无法解释背风波能量通量。然后将 Smith 的背风波模型扩展到低弗劳德数区域,并考虑旋转的影响。虽然此前的强分层实验表明,只有障碍物的顶部 U / N 会产生内波,但旋转的影响似乎会改变这种造波高度。一旦修改 U / N 高度以考虑旋转,扩展的 Smith 模型就可以合理准确地再现背风波能量通量。