通过便携式仪器持续监测心血管疾病的早期诊断对心脏呼吸信号的持续监测,人们对光杀解物学(PPG)的兴趣越来越越来越大。In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identi fi cation of apneas and the quanti fi cation of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring.因此,这项工作的目的是提出一种新型的脉搏血氧仪,该脉冲血氧仪在传输模式下提供了与三个光波长(绿色,红色和红外线)相关的同步数据记录,以优化心率测量以及对氧饱和度的可靠且连续评估。传输模式在运动伪影中被认为比反射模式更健壮,但是由于该波长在该波长处的身体组织吸光度很高,因此电流脉搏血氧仪无法在传输模式下采用绿光。出于这个原因,我们的设备基于单光雪崩二极管(SPAD),其死亡时间很短(少于1 ns),同时具有单个光子灵敏度和高计率,允许在同一站点和传输模式下获取所有利率的所有利率。先前的研究表明,SPAD摄像机可用于通过远程PPG测量心率,但是到目前为止,从未解决过基于接触SPAD的PPG传感器通过接触SPAD的PPG传感器进行的氧饱和度和心率测量。对六名健康志愿者进行初步验证的结果反映了预期的生理现象,从而在小于70 ms的间隔间隔估计中提供了RMS误差(带有绿光),氧气饱和度的最大误差小于1%的氧气饱和度小于1%。我们的原型展示了基于SPAD的设备的可靠性,用于连续长期监测心脏响应变量,以替代光电二极管的替代方案,尤其是在需要最小的面积和光学功率时。
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
由亚波长大小的金属或介电纳米结构二维排列组成的光学超表面可用于操纵亚波长厚度层的光特性。1–4 光学超表面被认为是完美的 5 和选择性 5,6 吸收器和透镜。7 光学超表面的可能应用包括与 CMOS 图像传感器结合用作滤波器 8 或用作生物传感器的构建块。9,10 相比之下,很少有人尝试将超表面直接整合到光电器件中,并利用其波长选择性和偏振选择性等特性。金属超表面已与体光电探测器相结合,用于光电流增强和传感。11,12 介电超表面已被构造到体 Si 和 Ge 光电二极管的顶层,以增强宽带响应度。13
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
相干技术目前正在深入讨论短距离内的光学互连。本文报告了先前工作的进度,该工作分析了从C-到O带光学方面的好处,以实现数字信号处理。在这里,我们研究了将连贯的方法适应已建立的数据中心互连技术(PSM4)的可行性。这种类似PSM4的实现带来了对激光漂移的弹性大大提高的好处,从而减少或消除了对温度稳定激光器的需求,这通常假定是相干收发器的需求。分析取决于SIGE光子BICMOS技术中相干接收器的先前实验实现的部分模拟参数。此外,我们还利用了有关在20 nm波长窗口上优化O-带2D光栅耦合器在效率和低极化依赖性方面的最新结果。我们将这些耦合器确定为启用类似于PSM4的实现的构建块。©2023作者。代表日本应用物理学会出版,由IOP Publishing Ltd
化学交联能够快速识别 RNA-蛋白质和 RNA-核酸分子间和分子内相互作用。然而,目前尚无方法能够位点特异性和共价交联 RNA 内两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够位点特异性和酶促交联(夹紧)RNA 内两个选定的鸟嘌呤残基。分子内夹紧会破坏正常的 RNA 功能,而随后对交联剂进行光裂解会恢复活性。我们使用 RNA-CLAMP 通过光裂解交联剂夹紧 CRISPR-Cas9 基因编辑系统的单向导 RNA (sgRNA) 内的两个茎环,完全抑制编辑。可见光照射会裂解交联剂并以高时空分辨率恢复基因编辑。设计两种对不同波长的光有响应的光裂解接头,可以在哺乳动物细胞中实现基因编辑的多路复用光激活。这种光激活的 CRISPR-Cas9 基因编辑平台受益于无法检测的背景活动,提供激活波长的选择,并具有多路复用功能。
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
摘要:光量子技术有望彻底改变当今的信息处理和传感器。许多量子应用的关键是纯单光子的有效来源。对于用于此类应用的量子发射器,或对于相互耦合的不同量子系统,量子发射器的光发射波长需要进行定制。在这里,我们使用密度泛函理论来计算和操纵二维材料六方氮化硼中荧光缺陷的跃迁能量。我们的计算采用 HSE06 函数,它使我们能够准确预测 267 种不同缺陷的电子能带结构。此外,使用应变调谐,我们可以定制合适量子发射器的光跃迁能量,以精确匹配量子技术应用。因此,我们不仅提供了为特定应用制造发射器的指南,而且还提供了一条有希望的途径来定制可以耦合到其他固态量子比特系统(例如金刚石中的色心)的量子发射器。
Excelitas 应用工程师 Matthias Koppitz 表示:“凭借 30 多年开发激光材料加工光学系统的经验,我们种类繁多的电动 LINOS 扩束器因其能够满足最严格的要求而闻名。” “我们适用于 340 nm-360 nm 波长范围的新型 LINOS 扩束器 1x-4x 延续了这一传统。它更小巧紧凑的尺寸和无色阳极氧化处理可确保满足激光系统对各种紫外线应用制造的光子需求的各个方面。” 适用于 340 nm-360 nm 的新型 LINOS 扩束器 1x-4x 将于 2022 年 6 月 21 日至 23 日在德国斯图加特的 LASYS 上展出(Excelitas 展位号 4E13,4 号厅)。欲了解更多信息,请访问产品网页:https://www.excelitas.com/product/linos- motorized-variable-magnification-beam-expander 。
摘要——开发具有窄带和可调光谱灵敏度的高性能多光谱光电探测器具有重要意义,但迄今为止仍然极具挑战性。本文,我们报道了一种 Si Au/n 型 Si/Au 光电探测器,它不仅在紫外线而且在近红外区域都具有可调窄带灵敏度,这与受控电荷收集变窄 (CCN) 机制有关。此外,当偏压从 0.1 变为 -0.1 V 时,该器件的负响应峰可以从 365 nm 轻松调整到 605 nm,正响应峰可以从 938 nm 调制到 970 nm。特别是,当负响应峰和正响应峰分别接近紫外短波长端和近红外长波长端时,半峰全宽分别小至 92 nm 和 117 nm。器件在紫外-可见光和近红外区域的响应极性相反,使得目前的硅光电探测器在未来的多波段光电系统中具有潜在的重要意义。