摘要:近场辐射传热(NFRHT)测量通常依赖于定制的微发行版,这些版本在其原始演示后可能很难再现。在这里,我们使用纯硅(SIN)膜纳米力学谐振器研究NFRHT,一种可广泛可用的基材,用于电子显微镜和光学力学等应用,并可以轻松地沉积其他材料。我们报告的测量值降低到较大的曲率半径(15.5 mm)玻璃散热器和SIN膜谐振器之间的最小距离。在如此深的次波长距离处,热传递在(0.25 mm)2的有效区域上由表面极化共振支配,这与使用自定义的微型制造设备的平面 - 平面实验相当。我们还讨论了使用纳米力学谐振器的测量如何创造机会,同时测量近场辐射传热和热辐射力(例如,对Casimir力的热校正)。关键字:近场辐射,纳米力学谐振器,热辐射,表面极化
作为迅速扩展的2D材料家族,MXENES最近引起了人们的关注。通过开发一种涂层方法,该方法可实现无传输和逐层膜涂层,研究了Ti 3 C 2 t x mxeneFim的非线性光吸收(NOA)。使用Z扫描技术,MXENEFILM的NOA在≈800nm处的特征。结果表明,随着层数从5增加到30的增加,从反向吸收吸收(RSA)转变为可饱和吸收(SA)。值得注意的是,非线性吸收系数的β变化从≈7.1310 2 cm GW 1到在此范围内的2.69 10 2 cm GW 1。也表征了MXENEFIM的功率依赖性NOA,并且观察到β的趋势下降以增加激光强度。最后,在≈1550nm处的2D mxene纤维的NOA的特征是将它们整合到氮化硅波导上,在其中观察到薄膜的SA行为,包括5和10层MXENE,与在≈800nm处观察到的RSA相反。这些结果揭示了2D MXENEFM的有趣的非线性光学性质,突出了它们的多功能性和实现高性能非线性光子设备的潜力。
量子互联网连接远程量子处理器,这些处理器需要通过光子通道进行长距离交互和交换量子信号。然而,这些量子节点的工作波长范围并不适合长距离传输。因此,量子波长转换为电信波段对于基于光纤的长距离量子网络至关重要。在这里,我们提出了使用连续变量量子隐形传态的单光子偏振量子比特波长转换器,它可以有效地在近红外(适合与原子量子节点交互的 780/795 nm)和电信波长(适合长距离传输的 1300-1500 nm)之间转换量子比特。隐形传态使用纠缠光子场(即非简并双模压缩态),可以通过铷原子气体中的四波混合产生,使用原子跃迁的菱形配置。纠缠场可以以两个正交偏振态发射,相对相位锁定,特别适合与单光子偏振量子比特接口。我们的工作可能为实现长距离量子网络铺平道路。
使用激光器以高空间精度实现硅中受控的晶体相变,承诺在包括硅光子学在内的半导体技术中新的制造溶液。最近的改善非晶厚度位置超快激光器作为应对当前挑战的最佳工具。在这里,审查了有关硅转化的文献,并与新的实验数据相辅相成。这包括非晶态和消融响应,这是脉冲持续时间的函数(𝝉 = 13.9至134 fs 𝝀 = 800 nm)和激光波长(𝝀 = 258至4000 nm,𝝉 = 200 fs脉冲)。对于脉冲持续时间依赖性的SI研究(111),非晶化的阈值随持续时间较短而降低,强调了在考虑条件范围内非线性吸收的显着性。对于波长依赖性研究,非晶化阈值从𝝀 = 258急剧增加到1030 nm,其次是接近恒定的行为至𝝀 = 3000 nm。相反,在这些指定的范围内的消融阈值增加。还讨论了在Si(111)和Si(100)上获得的非晶化厚度的差异,并识别出异常大的宽度范围,以在𝝀 = 258 nm处进行非晶化。最后,解决了与相互作用非线性无关的横向分辨率的问题。
根瘤菌是土壤细菌,可以与豆科植物建立氮固定共生。作为水平传播的共生体,根瘤菌的生命周期包括土壤中的自由生活阶段和植物相关的共生阶段。在整个生命周期中,根瘤菌暴露于与它们相互作用的无数其他微生物中,从而调节其拟合度和共生性能。在这篇综述中,我们描述了根茎与其他微生物之间相互作用的多样性,这些微生物在根际,结节开始和结节中可能发生。这些根瘤菌 - 微生物相互作用中的某些是间接的,并且发生某些微生物的存在以一种以根瘤菌的方式反馈的植物生理学的存在。我们进一步描述了这些相互作用如何对根瘤菌施加显着的选择性压力并修改其进化轨迹。对复杂的生物环境中根茎的生态进化动力学进行更广泛的研究可能会揭示出这种认真的共生相互作用的引人入胜的新方面,并为未来的农艺应用提供了关键的知识。
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
摘要:近年来,基于硅的非线性光子学已在电信波长上进行了广泛的研究。然而,在中红外波长的硅中对硅非线性的研究仍然有限。在这里,我们报告了光谱中三阶非线性的波长依赖性范围从1.6 µm到6 µm,以及在同一范围内的多光子吸收系数。在波长为2.1 µm的波长下,以1.65×10-13 cm 2 /w的峰值为1.65×10-13 cm 2 /w测量三阶非线系数n 2,然后以非线性折射率n 2的衰减,最高2.6 µm。我们的最新测量值将波长扩展到6 µm,n 2的急剧降低超过2.1 µm,并且稳步保持在3 µm以上。此外,在2.3 µm至4.4 µm的波长范围内同时进行三光子吸收和四光子吸收过程的分析。此外,详细讨论了多光子吸收对硅非线性功绩的影响。
当粒子与辐射波长相比非常小时,就会发生瑞利散射。这些粒子可能是小的尘埃或氮和氧分子。瑞利散射导致较短波长的能量散射得比较长波长的能量多得多。瑞利散射是高层大气中的主要散射机制。白天天空呈现“蓝色”就是由于这种现象。当阳光穿过大气层时,可见光谱中较短波长(即蓝色)的散射比其他(较长)可见波长的散射更多。日出和日落时,光线必须比中午时穿过大气层更远,较短波长的散射更完全;这使得较大比例的较长波长能够穿透大气层。