摘要:环形谐振器是硅光子学中滤波器、光延迟线或传感器的重要元件。然而,目前工厂中还没有低功耗的可重构环形谐振器。我们展示了一种使用低功耗微机电 (MEMS) 驱动独立调节往返相位和耦合的加/减环形谐振器。在波长为 1540 nm 且最大电压为 40 V 的情况下,移相器提供 0.15 nm 的谐振波长调谐,而可调耦合器可以将直通端口处的光学谐振消光比从 0 调节到 30 dB。光学谐振显示出 29 000 的被动品质因数,通过驱动可以增加到近 50 000。MEMS 环在晶圆级上单独真空密封,能够可靠且长期地保护免受环境影响。我们循环机械致动器超过 4 × 10 9
垂直腔面发射激光器 (VCSEL) 是众多工业和消费产品中非常重要的光源。主要应用领域是数据通信和传感。数据通信行业使用基于 GaAs 的 VCSEL 进行光学互连,这是一种短距离光纤通信链路,用于在数据中心和超级计算机内的单元之间以高速率传输大量数据。在传感领域,VCSEL 广泛应用于消费产品,如智能手机(例如面部识别和相机自动对焦)、计算机鼠标和汽车(例如手势识别和自动驾驶的激光雷达)。在这项工作中,我们开发了一种基于物理的先进数据通信 VCSEL 等效电路模型。该模型有助于与驱动器和接收器 IC 进行协同设计和协同优化,从而实现具有带宽受限 VCSEL 和光电二极管的更高数据速率收发器。该模型还有助于理解 VCSEL 内的每个物理过程如何影响 VCSEL 的静态和动态性能。它已被用于研究载流子传输和捕获对 VCSEL 动力学的影响。这项工作还包括在氮化硅光子集成电路 (PIC) 上微转移印刷基于 GaAs 的单模 VCSEL。这种 PIC 越来越多地用于例如紧凑且功能强大的生物光子传感器。VCSEL 的转移印刷使 PIC 上集成节能光源成为可能。底部发射的 VCSEL 印刷在 PIC 上的光栅耦合器上方,并使用光反馈来控制偏振,以便有效耦合到氮化硅波导。生物传感应用所需的波长调谐是通过直流调制实现的。
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
国际出版物10)Ionut Romeo Schiopu,“使用孤子稳定性进行高压电流电网测量的高压电流测量”,在国际会议上“光电学的高级主题,微电子和纳米技术的高级主题” 9)Ionut Romeo Schiopu,Brandus comanescu,Paul Schiopu“使用被动模式锁定的孤子纤维激光线性线性腔来调查透明媒体”在国际会议上“光电子学的高级主题8)Ionut Romeo Schiopu,Magnus Karlsson,Paul Schiopu“通过在一定的DCF腔中引入一定长度的DCF呈现”在国际会议上,“提高了被动模式锁定的光纤环激光器的稳定性”,“在Optoelectronics,Microelectronics,Microelelectronics and Microelectronics and Microelectronics and Microlectronics and Microlectronics and Microlectronics and Nanoteies”上(Attronoices in International Conference''SPIE 7821,78210d(2010); doi:10.1117/12.882281,7)Ionut Romeo Schiopu和Paul Schiopu,“稳定性的机制增强了被动模式锁定的Erbium掺杂纤维环激光器的增强机制,通过被动地调节可吸收器的损失,并在Amplifier的高级播出中,或者在国际上销售的效果,或者在国际上销售,或者是国际上的高频,或者是国际上的介绍”微电子和纳米技术”,(Atom-N 2010),Proc。SPIE 7821,78210c(2010); doi:10.1117/12.882279; 6)Ionut Romeo Schiopu和Paul Schiopu,“在更改腔中的总衰减或更换泵功率时,在PMFL中形成的孤子的中心波长调谐机制”,U.P.B.SCI。 Bull。,系列,第1卷。 72,ISS。SCI。Bull。,系列,第1卷。72,ISS。72,ISS。3(2010),第157-166页; 5)Ionut Romeo Schiopu,Magnus Karlsson,Mathias Westlund,Carmen Schiopu,“实验性测量孤子脉冲稳定性的实验性测量,用于被动模式的纤维激光器的不同配置,口头呈现,在国际上的“高级主题”,“ 6 Microelectronics and artie Electie andie atie atie atie ate”卷。7297,72971V(2009); doi:10.1117/12.823671; 4)Ionut Romeo Schiopu,Magnus Karlsson,Mathias Westlund,Carmen Schiopu,“两条路径模式模式锁定的纤维激光器”,在国际会议上的口头介绍“光电学领域的高级主题,微电子学和纳米技术”,(Atom-N-N-N2008 2008),Spie Resporters,Spie Gromernings vol。7297,72971V(2009); DOI:10.1117/12.823678, 3) Ionut Romeo Schiopu and Elena Mirela Babalic, "Proiectarea si Optimizarea Memoriilor Magnetorezistive cu Acces Aleator” (“Designing and Optimizing Random Magnetoresistive Memories”), book published in Romanian language at Ed.electra,布加勒斯特,2006,2)Ionut Romeo Schiopu和Iancu Ovidiu,“ MRAM的GHz感官放大器”,在国际会议上的口头呈现“光电学的高级主题,微电源,微电动和纳米技术” 6635,pp。663508(2007),doi:10.1117/12.741868,1)Ionut Romeo Schiopu和Iancu Ovidiu,“使用适应能力的电路对MRAM进行快速阅读”,在国际研讨会上的口头介绍国际研讨会,用于电子包装的设计和技术技术技术(SIITME),SIITME,21-24,2006年,2006年,2006年。