从历史上看,通过挖掘航道、将其保持在既定水平以及清理水池、码头等,可以更容易地进入港口区域。我们努力开发越来越高效的挖泥机,以满足搬运数百万立方米泥沙的需求。目前可用的设备由专用机器组成,可满足疏浚区域的特定需求和沉积物的性质:或多或少压实的泥土、沙子等。从确定沉积物可能携带大量污染物和有毒物质的那一刻起,有关疏浚和倾倒对环境影响的新担忧就出现了。因此,对倾销危险性进行预测评估已成为管理者的必要之举。然而,事实证明,沉积物,特别是港口的沉积物,是复杂的、动态的、有生命的、不断变化的隔间,并且与水柱保持着恒定的关系。沉积物再加工造成的相关污染物的命运及其潜在影响涉及相互作用的现象,其中一些现象(例如生物利用度)仍然知之甚少。影响、社会和经济方面的科学不确定性是管理者在不断变化的监管环境中必须考虑的参数,以选择合适的技术并为许可证的发放奠定基础。在许多情况下,这些决定并不容易做出,并且会引发激烈的争论。这就是 Ifremer 主动实施多学科研究计划的原因,以解决物理、化学和生物影响。该项目得到了国土规划和环境部 Pnétox 和 Liteau 招标以及设备、运输和住房部 Géode 工作组的支持,其目标是提高我们的知识研究港口沉积物的影响和归宿,并将这些结果以实际形式传递给管理者。供管理者使用的方法指南应在该领域取得进展。这项工作是该计划的首批贡献之一。面向科学家和管理者,无意详尽无遗,而是为疏浚环境问题提供基础。事实上,在“与疏浚活动相关的环境问题国际研讨会”(南特,1989 年)十年后,似乎有必要更新对该领域知识的评估。
在南美洲长达 1500 公里、泥质丰富的圭亚那海岸,在亚马逊河和奥里诺科河这两条大河的河口之间,汇入众多小河流,流入潮湿的热带/赤道圭亚那地盾。这些河口的地貌发展反映了水流量、河流沉积物负荷和亚马逊衍生的泥滩沿岸迁移与河岸间区域交替之间的相互作用。横跨法属圭亚那-苏里南边界的马罗尼河河口显示出先进的河口填充和地貌发展,其特点是西侧(下流)由众多最近的切尼尔河组成,东侧(上流)由古老的(> 2000 年前)切尼尔河包围。对这个 chenier 边界海滩进行的多年代分析表明,尽管存在显著的十年到亚十年变化,但总体净流动性很小。总体稳定性反映了马罗尼河的沙子供应转向下游海岸,以及更东边较小的马纳河的沙子供应有限,而马纳河的南岸与这个海滩相邻。海滩多年代流动性的变化反映了沿岸迁移的堤坝(强波浪消散,有限的海滩流动性)和堤坝间区域(有限的波浪消散,更大的海滩流动性)对波浪的影响,通过当前堤坝阶段离岸和近岸波浪的比较可以突出这一点。2011 年至 2017 年海滩的侵蚀与 2011 年泥浆进积封闭马纳河口以及河口向东迁移数公里的情况相吻合。海滩的形态动力学和短期预算波动与以下因素有关:(1) 与相邻浅滩面上的强潮汐流引起的河口沙丘的相互作用,(2) 马罗尼河道的影响,以及 (3) 海滩东部岸边泥滩前缘的快速侵蚀。因此,海滩形态动力学和演化突出了嵌入的影响水平:马罗尼河在当地范围内,以及影响圭亚那海岸的区域范围内向西的净泥沙输送系统和河岸及河岸间交替。最近的侵蚀减少了可用于休闲和海龟筑巢的海滩空间,对当地社区构成了威胁。
A 支付能力 8270 混凝土坝基础 8312 可访问性合规性与评估 8120 混凝土坝与混凝土结构检查 8130 酸性矿井排水 8313 混凝土坝、地震分析 8110 声学 8560 混凝土管道设计与调查 8140 行政记录管理 8270 混凝土修复、测试与技术 8530 航空摄影 8250 高性能混凝土 8530 骨料测试 8530 预制混凝土 8120 农业气象学 8250 状况评估、材料或结构 8530/8540 两栖动物研究与调查 8290 锥体渗透测试 (CPT) 8320 辅助服务监控 8440 建设成本估算与提案审查 8520 水生生物修复与系统 8290 建设成本趋势、指数 8520 含水层/溪流8320 施工地质测绘 8320 电弧闪光 8440 施工管理与合同进度安排 8510 建筑设计 8120 施工质量保证/材料测试 8530 建筑模型 8560 施工支持与检查 8510 竣工图/TSC 图 8322 消耗性使用 8210 大气/流域生态系统模型 8250 合同索赔咨询服务与管理 8510 AutoCAD 8322 控制系统分析与测试 8440 自动数据采集系统 8320 控制系统设计 8430 自动化、灌溉 8560 受控低强度材料 (CLSM) 8530 自动化、发电厂与发电控制 8450 输送系统自动化 8140 鸟类调查与研究 8290 输送机 8410 B 芯回收 8320 河岸与河床稳定化与河床物质采样 8240 腐蚀保护/监测 8540 水深测量 8560 土壤和水的腐蚀性测试 8540 电池测试 8450 成本分配效益与评估 8270 轴承冷却系统 8410 成本与效益 8270 生物防治 8560 起重机和提升机 8410 爆破要求 8312 关键路径法 (CPM) 计划 8510 内窥镜检查 8410 交叉排水研究 8250 借土区开发 8311/8320 截水墙 8313 借土、桥梁和建筑调查 8320 D 桥梁和建筑基础、地质分析 8320 大坝和潜水检查及潜水队 8130 桥梁 8150 大坝溃口建模 8560 预算和进度制定 建筑增建、改造、修复、拆除或改造 8010 (泥沙输送) 8240
专业经验 IVM Partners, Inc.(综合植被管理合作伙伴)总裁 2003 年至今 IVM Partners, Inc. 是一家 501-C-3 非营利性公司,致力于开发、教育专业人员和公众并应用综合植被管理实践,以提供安全、可靠和方便的公用事业和公路通行权 (ROW),改善野生动物和濒危物种栖息地,控制外来杂草,降低野火风险。我们发展行业和政府之间的合作伙伴关系,以便采用最佳实践以安全、经济和对环境负责的方式解决军事设施、社区、森林、公园、高尔夫球场和野生动物保护区的植被管理问题;并与大学和保护组织合作,就植被管理实践中的区域地理生理差异进行研究和传播信息。 2025 通过 Blackwater NWR 与 USFWS 和马里兰州自然资源部区域建立合作伙伴关系并监测 Choptank Electric Cooperative ROW 的 IVM 栖息地恢复。 2025 为弗吉尼亚州 Apex 清洁能源公司的 Riverstone 太阳能项目开发 IVM 生态系统恢复案例研究。 2024 正在为北卡罗来纳州 Apex 清洁能源公司的 Timbermill 风能项目开发 IVM 生态系统恢复案例研究。 2023 正在马里兰州埃尔克顿 Patriots Glen 高尔夫球场开发 IVM 案例研究,以监测湿地和高地栖息地中本地植物的栖息地恢复情况。 2023 正在北卡罗来纳州开发 Piedmont Natural Gas (Duke Energy) ROW 的 IVM 案例研究,以监测从年度割草到 IVM 的栖息地变化过渡。 2023 正在与 Envu 建立业务合作伙伴关系,以开发 IVM 案例研究和传粉者地价指数 (PSVI) 指标,以确定恢复的栖息地效益。 2022 开发马里兰州公用事业和高速公路 ROW、高尔夫球场和农业的案例研究,以便根据 ANSI A-300 第 7 部分-IVM 进行 IVM 最佳实践的实地参观教育。 2022 开发 IVM 项目并指导俄克拉荷马州 Energy Transfer 天然气草原栖息地恢复的生态系统研究。2022 开发 IVM 项目并指导 TC Energy 和 WSSI 的生态系统研究,与西弗吉尼亚州自然资源部合作,研究通过西弗吉尼亚州杰克逊堡附近的 Lewis Wetzel 野生动物管理区的页岩气输送 ROW。2021 与拜耳和科罗拉多州弗吉尼亚戴尔附近的沃尔堡加修道院合作开展雀麦草控制和牧场恢复研究。2020 年与拜耳和克莱姆森大学合作,在南卡罗来纳州开展关于 Dominion Energy 电力 ROW 的 IVM 案例研究。2019 与先正达公司持续开展业务合作,开发 IVM 案例研究和传粉媒介站点价值指数 (PSVI) 指标,以确定恢复的栖息地效益 2018 为路易斯安那州交通部和安特吉公司提供有关州际公路 ROW 沿线新电力传输清理的建议,以恢复本地早期演替植物群落。 2018 持续协助特拉华州和马里兰州农业部采用 IVM 最佳实践,恢复农田和税沟周围 CRP 土地沿线的本地传粉媒介和鸟类栖息地,并减少切萨皮克湾和沿海海湾的径流和泥沙沉积。
下一代先进涡轮机控制研发 —Alan D. Wright,国家可再生能源实验室 通过先进的控制策略提高能量产出、减轻负荷和稳定海上张力腿平台 (TLP) 风力涡轮机系统的能源成本 —Albert Fisas,阿尔斯通电力公司 叶片设计工具和系统分析 —Jonathan Berg,桑迪亚国家实验室 WE 5.1.2 海上风电研发与技术:创新概念 —D.Todd Griffith,桑迪亚国家实验室 计算机辅助工程 (CAE) 工具 —Jason Jonkman,国家可再生能源实验室 浮动平台动态模型 —Jason Jonkman,国家可再生能源实验室 在公共领域开发系泊锚定程序以与 FAST 耦合 —Joseph M.H.Todd Griffith,桑迪亚国家实验室 枢轴海上风力涡轮机 —Geoff Sharples,Clear Path Energy 先进浮动涡轮机 —Larry Viterna,Nautica Windpower OSWind FOA #2 海上技术开发 —Josh Paquette,桑迪亚国家实验室Kim,德克萨斯 A&M 大学 海上风电结构建模与分析 —Jason Jonkman,国家可再生能源实验室 创建用于通用模拟代码的底部固定风力涡轮机与表面冰相互作用模型 —Tim McCoy,DNV KEMA Renewables,Inc. 底部固定平台动力学模型评估五大湖过渡深度结构的表面冰相互作用 —Dale G. Karr,密歇根大学 五大湖浅水海上风电优化 —Stanley M. White,海洋与海岸顾问公司 改进海上风能系统设计基础的先进技术 —Ralph L. Nichols,萨凡纳河国家实验室 针对威尔明顿峡谷附近大型涡轮机风电场优化的系统设计 —Willett Kempton,特拉华大学 海上风电研发与技术:泥沙输送 —Daniel Laird,桑迪亚国家实验室 飓风抗拒风工厂概念研究 (FOA) —Scott Schreck,NREL 国家风能技术中心 风力发电厂优化和系统工程 —Paul Veers,国家可再生能源实验室 航空声学 - 先进转子系统 —Patrick Moriarty,国家可再生能源实验室 风力涡轮机原位粒子图像测速 (PIV) —Rodman Linn,洛斯阿拉莫斯国家实验室 尾流测量系统 —Brian Naughton,桑迪亚国家实验室 创新传动系统概念 (FOA) —Jonathan Keller,国家可再生能源实验室 用于大型风力涡轮机的轻型、直驱、全超导发电机 —Rainer B. Meinke,高级磁铁实验室公司 先进转子系统西门子 CRADA 空气动力学 —Scott Schreck,国家可再生能源实验室 国家转子试验台 —Brian Resor,桑迪亚国家实验室 SMART 转子测试与数据分析 —Jonathan Berg,桑迪亚国家实验室 高效结构流通带主动襟翼控制的转子 —Mike Zuteck,Zimitar 公司 采用先进材料和被动设计概念的海上 12 兆瓦涡轮机转子 —Kevin Standish,西门子能源公司 WE 5.1.3 海上风电研发与技术:大型海上转子开发 —D。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。