通过揭示不同电路深度各个子区域的纠缠熵和互信息的时空共形协方差,我们建立了 (1 + 1) 维混合量子电路中共形场论 (CFT) 在测量驱动纠缠转变时的出现。虽然演化是实时发生的,但电路的时空流形似乎承载着具有虚时间的欧几里得场论。在整篇论文中,我们通过在空间和/或时间边界注入物理量子位来研究具有几种不同边界条件的 Clifford 电路,所有这些都给出了底层“Clifford CFT”的一致特征。我们强调 (超) 通用结果,这些结果仅仅是共形不变性的结果,并不关键地依赖于 CFT 的精确性质。其中包括由于测量引起的量子非局域性而导致的无限纠缠速度和混合初始状态的临界净化动力学。
摘要 - 具有触发动作功能的事物(IoT)平台的信息(IoT)平台允许事件条件通过创建一系列交互来自动触发IoT设备中的操作。对手利用这种互动链将虚假事件条件注入物联网中心,从而在目标IoT设备上触发未经授权的操作以实现远程注入攻击。现有的防御机制主要集中于使用物理事件指纹对事件交易的验证,以实施安全策略以阻止不安全的事件交易。这些方法旨在提供防止注射攻击的离线防御。最新的在线防御机制提供了实时防御,但是对攻击推断对物联网网络的推断影响的可靠性限制了这些方法的概括能力。在本文中,我们提出了一个独立于平台的多代理在线防御系统,即限制,以应对运行时的远程注射攻击。限制允许国防代理在运行时介绍攻击动作,并利用强化学习来优化符合IoT网络安全要求的国防政策。实验结果表明,防御代理有效地采取了针对复杂和动态远程注射攻击的实时防御动作,并通过最小的计算开销来最大化安全增益。索引术语 - 事物的内部,触发器平台,重新注射攻击,强化学习,深度复发Q网络,多代理系统。