无人机正在广泛部署在建筑中,他们与建筑专业人员之间的相互作用预计将来会增加。但是,在建筑专业人员附近的这些空中机器人的部署可能与影响工作场所安全性和健康状况的其他风险有关。这项研究探讨了无人机在与建筑专业人士不同距离上存在的注意力影响。通过以用户为中心的虚拟现实实验,要求建筑专业人员在跟踪眼睛运动的同时,通过无人机的存在来完成施工任务。结果表明,无人机的存在会影响参与者的注意状态,这些空中机器人吸引了一些建筑专业人员的注意力。参与者的注意状态也受到无人机操作距离的影响,与无人机相比,无人机靠近无人机,而持续时间较短,而不是位于较远距离的人。这项研究的贡献是通过向行业人员告知无人机对工作地点的潜在安全性影响,并协助对行业中使用航空机器人的特定法规的形式化,来确保安全的人无人机相互作用。关键词:无人机,注意力分配影响,建筑安全,人为无人机相互作用,近亲
许多自闭症谱系障碍(ASD)的儿童也患有注意力/多动症(ADHD)。ADHD与负面结果的风险增加有关,并且早期干预至关重要。当前的指南建议进行社会心理干预措施,例如行为训练,例如在管理或没有ASD的儿童中管理多动症症状的第一个治疗方法。如果症状对这些干预措施产生难治性,则建议使用刺激剂,2-肾上腺素能激动剂抑制剂,选择性去甲肾上腺素再摄取抑制剂和第二代抗精神病药。但是,这些药物治疗没有在学龄前儿童中使用的监管批准,并且证据证明了该人群的安全性和效率在历史上非常有限。自2020年发布当前指南以来,已经发表了一些新的随机对照试验和现实世界的研究,这些试验已经调查了这些药物在患有ADHD的学前班儿童中的效率和耐受性,有或没有合并症ASD。在这里,我们对这些研究的关键发现进行了综述,该研究表明,越来越多的证据支持在患有ASD合并症的学龄前儿童中使用药理学干预措施。
数十年来,欧洲科学和创新方面的进步一直取决于两个关键支柱:尊重知识产权,保护创造者的自主权和生计以及自由交流思想,对民主治理必不可少。随着数字技术和AI的兴起,这种平衡正在发生变化。我们承认,欧盟的AI政策需要考虑到不同的公共利益政策目标,但这绝不侵犯或超越作者和表演者对他们的工作的权利,以及他们工作的公平报酬,因为他们是推动欧洲在科学,文化,遗产和民主方面的进步的人。
b' 在示例 13.1 的解决方案中,第二行应为:但是,64QAM OFDM 信号表现出...。最后一句应为:82-dBm PSK OFDM 信号具有大致相同的行为。请注意,此校正会影响此示例之后的增益计算。'
当今大多数心理学家对“智力”一词的理解本质上是一个差异性概念。最广为接受的智力结构描述是赫布-卡特尔-霍恩-卡罗尔(HCHC)模型(Brown,2016;Carroll,1993;McGrew,2009;见图 1),该模型将智力归因于一个层次结构。在最低层次上,特定技能和狭义的认知能力可能会对不同的认知任务产生影响。在第二层次上,更具普遍性的广义能力因素有助于解释为什么某些任务彼此之间的关联比与其他任务的关联更紧密。这些广义的能力是相关的,这种常见的、任务一般性的变异性在该模型层次结构的顶端表示为一般智力,通常表示为 g 或 g 因子。 g 因子解释了为什么所有认知任务都倾向于相互关联,这种模式被称为正流形(Carroll,1993;McGrew,2009)。尽管人们对智力结构有着广泛的共识,但对于导致智力个体差异的因果因素,人们的看法却不太一致。智力差异的一个主要解释是人们完成基本认知操作的速度不同,这被称为信息处理速度或处理速度。另一个可能的解释是执行注意力或避免分心、集中注意力和保持注意力的能力不同,有时也称为“认知控制”或“执行功能”。
随着检查点抑制剂 (ICI) 或 T 细胞接合剂 (TCE) 的发展,针对免疫系统已被证明是一种成功的癌症治疗方法。由于免疫肿瘤药物会调节免疫系统来攻击癌细胞,而不会直接作用于致癌弱点,因此在临床开发期间应考虑这些化合物的特定特性。在本综述中,我们将讨论相关概念,包括临床前模型的局限性、特殊的药理学界限、临床开发策略(例如临床适应症、治疗线和骨干合作伙伴的选择),以及药物开发不同阶段所需的终点和预期效益。此外,我们还将回顾早期和晚期试验设计的未来方向。我们将讨论已获批准药物或当前处于临床开发阶段的药物的示例,并提供克服这些局限性的选项。
d∈Rlc×1,收集所有时间滞后和通道的所有解码器系数,以及x(t)= h x 1(t)t x 2(t)t x 2(t)t·x c(t)t c(t)
您的宠物在接种疫苗后通常会出现轻微的副作用。通常在接种疫苗后数小时内开始出现,症状通常较轻,并且通常不会持续超过几天。这是您的宠物免疫系统在形成保护性免疫过程中的正常反应。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
本文介绍了一种新型的高质量深层检测方法,称为局部伪影注意网(LAA-NET)。现有的高质量深伪检测方法主要基于有监督的二进制分类器与隐式注意机制。因此,它们并不能很好地概括到看不见的射精。为了解决这个问题,做出了两个主要贡献。首先,提出了多任务学习框架内的明确注意机制。通过结合基于热图的和自矛盾的关注策略,LAA-NET被迫专注于一些小伪像易受攻击的区域。第二,提出了一个增强的特征金字塔网络(E-FPN),作为一种简单而有效的机制,用于将歧视性低级特征扩展到最终特征输出中,具有限制冗余的优势。在基准基准上进行的实验表明,在曲线下(AUC)和平均精度(AP)方面,我们方法的优越性。该代码可在https:// github上找到。com/10ring/laa-net。
