当今大多数心理学家对“智力”一词的理解本质上是一个差异性概念。最广为接受的智力结构描述是赫布-卡特尔-霍恩-卡罗尔(HCHC)模型(Brown,2016;Carroll,1993;McGrew,2009;见图 1),该模型将智力归因于一个层次结构。在最低层次上,特定技能和狭义的认知能力可能会对不同的认知任务产生影响。在第二层次上,更具普遍性的广义能力因素有助于解释为什么某些任务彼此之间的关联比与其他任务的关联更紧密。这些广义的能力是相关的,这种常见的、任务一般性的变异性在该模型层次结构的顶端表示为一般智力,通常表示为 g 或 g 因子。 g 因子解释了为什么所有认知任务都倾向于相互关联,这种模式被称为正流形(Carroll,1993;McGrew,2009)。尽管人们对智力结构有着广泛的共识,但对于导致智力个体差异的因果因素,人们的看法却不太一致。智力差异的一个主要解释是人们完成基本认知操作的速度不同,这被称为信息处理速度或处理速度。另一个可能的解释是执行注意力或避免分心、集中注意力和保持注意力的能力不同,有时也称为“认知控制”或“执行功能”。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
许多自闭症谱系障碍(ASD)的儿童也患有注意力/多动症(ADHD)。ADHD与负面结果的风险增加有关,并且早期干预至关重要。当前的指南建议进行社会心理干预措施,例如行为训练,例如在管理或没有ASD的儿童中管理多动症症状的第一个治疗方法。如果症状对这些干预措施产生难治性,则建议使用刺激剂,2-肾上腺素能激动剂抑制剂,选择性去甲肾上腺素再摄取抑制剂和第二代抗精神病药。但是,这些药物治疗没有在学龄前儿童中使用的监管批准,并且证据证明了该人群的安全性和效率在历史上非常有限。自2020年发布当前指南以来,已经发表了一些新的随机对照试验和现实世界的研究,这些试验已经调查了这些药物在患有ADHD的学前班儿童中的效率和耐受性,有或没有合并症ASD。在这里,我们对这些研究的关键发现进行了综述,该研究表明,越来越多的证据支持在患有ASD合并症的学龄前儿童中使用药理学干预措施。
方法:通过采用统一的GWA摘要数据,涵盖了GWAS目录中的731个免疫特征(从GCST0001391到GCST0002121的登录编号),我们的分析集中于淋巴细胞群的流动量仪,鉴定3,757 sardinians,以识别3,757 sardinians,以识别3,757 sardinians,以识别3,757 Sardinians,以识别3,757 Sardinians。此外,我们从精神病基因组学联盟中获得了总结GWAS统计数据,以评估ADHD的遗传预测。采用ADHD2019的研究(2019年GWAS ADHD数据集的20,183例病例和35,191例对照)和ADHD2022(38,691例病例和275,986例对照,来自2022 GWAS ADHD Dataset)。通过检查全基因组关联信号,我们使用全面的ADHD2022数据集中确定了循环免疫细胞和ADHD之间共享遗传方差。我们主要利用了孟德尔随机研究和敏感性评估中的反向差异加权(IVW)和加权中值方法来评估多样性和多效性。
心理学家扎卡里·罗珀和他的团队与两组志愿者合作:13 至 16 岁的青少年和 20 至 35 岁的成年人。每个志愿者都必须玩一种游戏。在训练阶段,计算机会显示六个圆圈,每个圆圈颜色不同。玩家必须找到红色或绿色的圆圈。这些目标里面有一条水平线或垂直线。其余圆圈有其他角度的线。当参与者找到正确的目标时,他们必须按下键盘上的两个键之一。一个键会报告他们找到了垂直线。另一个键报告找到了一条水平线。
高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
注意力是指人的注意力只集中在一个物体上,性质比较固定、坚定、强烈,不易将注意力转移到其他物体上,而健脑操是用来提高记忆力和注意力的锻炼或运动。本研究的目的是研究健脑操是否有助于提高儿童的注意力。研究方法本研究采用定量预实验,设计为一组前测-后测设计。本研究没有组间比较,但使用已有的组来测量治疗前后注意力得分差异。结果研究与讨论本章研究人员基于的数据收集于 2023 年 5 月 5 日至 8 日在北雅加达 Tanjung Priok 村 RT 002 RW 015 地区进行。研究对象的人数为 10 人,采用总抽样技术,样本来自涉及的所有人口。根据已进行的研究,可以得出结论,大脑锻炼对儿童的注意力有积极影响。大脑锻炼包括身体运动和大脑锻炼,可刺激血液流动和化学物质的释放,从而提高注意力和专注力。
摘要:本文解决了香草视觉变压器中与多头自我注意(MHSA)相关的高计算/空间复杂性。为此,我们提出了层次MHSA(H-MHSA),这是一种新颖的方法,以层次的方式计算自我注意力。具体来说,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,提议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小斑块合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。终于,将本地和全球专注的特征汇总为具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此计算负载大大减少。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的环境关系。与H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明帽子网络在场景中的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象titection和实例分段。因此,HAT-NET为视觉变压器提供了新的视角。代码和预估计的模型可在https://github.com/yun-liu/hat-net上找到。
空间注意力的机制优先考虑与其他位置相对于其他位置的感官信息。这些机制已通过多种方法进行了深入的研究,包括心理物理学,事件型大脑电位,功能成像和单细胞记录(例如,参见Parasuraman,1998年,有关所有这些方法的发现)。这项工作导致了许多可复制的发现和一些重要的区别。的秘密关注转移(例如Mangun,Hillyard和Luck,1993; Posner,1978)。刺激驱动的外源机制已与预期驱动的内源性机制区分开来(例如Hopfinger&Mangun,1998; Jonides,1981; Posner,1978)。通常通过使用空间非预测的外围提示来研究前者,后者通过中央提示或指示可能目标位置的指令进行研究。两种形式的提示都可以在提示的位置带来性能优势,但是外源和内源性机制被认为在几种方面有所不同,包括其效果的时间过程(例如,外源性效应通常更短暂地遵循