本报告收录了亚利桑那州立大学校长 Michael M. Crow 于 2008 年发表的一篇题为“创建创业型大学”的文章。该报告以亚利桑那州立大学为例,主要关注研究型大学的作用以及他如何能够改变文化,使大学的行为更像一家私营公司——“灵活、有竞争力、适应性强,能够响应我们选民和全球社会不断变化的需求”——而不是传统大学(第 2 页)。Crow 认为,他和他的亚利桑那州立大学同事已采取措施“将公立教育重新定义为以解决方案为中心的机构,将最高水平的学术卓越性、最大的社会影响力和对尽可能广泛的人口的包容性结合起来”(第 2 页)——结论是,现代大学必须在卓越和致力于广泛普及之间做出选择是一种错误的二分法。论文还包括研究型大学发展的历史分析、美国当代人口趋势的总结以及 ASU 采用创新基础设施和“系统创新方法”的努力(第 14 页)。
摘要:识别个体基因组中的遗传变异如今已成为人类遗传研究和诊断中的常规程序。然而,对于许多变异,尤其是非编码区域的变异,没有足够的证据来确定其致病作用。此外,候选变异的数量之多使得在单个检测中进行测试几乎是不可能的。虽然可扩展的方法正在开发中,但方法和资源的选择以及将给定框架应用于特定疾病或特征仍然是主要挑战。这限制了全基因组关联研究和基因组测序结果的转化。在这里,我们讨论了可用于非编码变异功能注释的计算和实验方法。
16. 摘要 越来越多地需要将无人机系统 (UAS) 用于一系列目前超出书面法规范围的新应用,包括出租车服务、包裹递送、农作物喷洒等。现行《联邦法规法典》第 14 章第 107 部分限制了 UAS 的航空公司应用。特别是,14 CFR 第 107 部分法规没有明确涉及 14 CFR 第 121 部分(即航空公司运营)和 14 CFR 第 135 部分(即通勤航空运营)。无人驾驶操作中的机组人员和人员配备要求已得到广泛研究,对此进行注释是本文件的重点,但 UAS 应用和 UAS 自动化的近期和持续发展导致机组人员的角色和职责发生变化。这份带注释的参考书目将有助于为从最后一英里到高空长航时操作的未来法规提供信息,以便这些 UAS 的新应用可以安全地集成到国家空域系统 (NAS) 中。本注释书目旨在汇总机组人员和人员配备文献,为航空公司运营中有关 UAS 操作员的未来法规提供参考。它涵盖了有关机组人员和人员配备、自动化、培训、测试以及值班和休息要求的一系列文献。文章是通过搜索与无人驾驶操作和机组人员和人员配备要求相关的关键词从 PsycINFO、Google Scholar 和联邦航空管理局 (FAA) 技术图书馆数据库收集的。七十六篇文章被确定为与本文献综述相关。文章包括实证研究、荟萃分析、文献综述和组织指南。本注释书目分为两个主要部分:无人机系统和载人操作,并附有相关小标题。这些小标题是根据一般发现生成的,即机组人员和人员配备需求应由运营需求决定,而 UAS 自动化的快速发展导致机组人员的角色发生变化。标准化 UAS 操作员机组人员和人员配备要求将支持 UAS 安全有效地融入 NAS。对于美国联邦航空局和行业利益相关者来说,这仍然是一项重要举措。
16. 摘要 越来越多地需要将无人机系统 (UAS) 用于一系列目前超出书面法规范围的新应用,包括出租车服务、包裹递送、农作物喷洒等。现行《联邦法规法典》第 14 章第 107 部分限制了 UAS 的航空公司应用。特别是,14 CFR 第 107 部分法规没有明确涉及 14 CFR 第 121 部分(即航空公司运营)和 14 CFR 第 135 部分(即通勤航空运营)。无人驾驶操作中的机组人员和人员配备要求已得到广泛研究,对此进行注释是本文件的重点,但 UAS 应用和 UAS 自动化的近期和持续发展导致机组人员的角色和职责发生变化。这份带注释的参考书目将有助于为从最后一英里到高空长航时操作的未来法规提供信息,以便这些 UAS 的新应用可以安全地集成到国家空域系统 (NAS) 中。本注释书目旨在汇总机组人员和人员配备文献,为航空公司运营中有关 UAS 操作员的未来法规提供参考。它涵盖了有关机组人员和人员配备、自动化、培训、测试以及值班和休息要求的一系列文献。文章是通过搜索与无人驾驶操作和机组人员和人员配备要求相关的关键词从 PsycINFO、Google Scholar 和联邦航空管理局 (FAA) 技术图书馆数据库收集的。七十六篇文章被确定为与本文献综述相关。文章包括实证研究、荟萃分析、文献综述和组织指南。本注释书目分为两个主要部分:无人机系统和载人操作,并附有相关小标题。这些小标题是根据一般发现生成的,即机组人员和人员配备需求应由运营需求决定,而 UAS 自动化的快速发展导致机组人员的角色发生变化。标准化 UAS 操作员机组人员和人员配备要求将支持 UAS 安全有效地融入 NAS。对于美国联邦航空局和行业利益相关者来说,这仍然是一项重要举措。
2012年至2017年之间的研究主要集中于支持技术,例如电话和视频会议,这些技术有助于促进ODR或提供计划(例如,分离后的育儿)。2019年的研究重点是替代技术,例如替代基于纸张流程的在线数字平台,以及使用人工智能和算法来决策和自动化法院流程的破坏性技术。2019年的研究还要求采用新技术来实现家庭和民间司法系统的现代化。研究和媒体文章的注释分别可以在附件A和B中找到。本报告的附件C中包括了研究中确定的一些在线平台和数字技术的列表。
估计此次信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将有关此负担估计或本次信息收集任何其他方面的评论(包括减轻负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1.报告日期 (DD-MM-YYYY) 2.报告类型 3.涵盖日期 (从 - 到) 19-11-2021 参考书目
该药物会接受进一步的监测。这将允许快速获取新的安全信息。我们要求医疗保健专业人员报告任何副作用的怀疑。副作用报告的详细信息请参阅第4.8节。1。comirnaty 30微克/剂量浓缩物的注射分散剂mRNA疫苗针对COVID-19(改性核苷)2。定性和定量组成这是一个多折瓶,其内容必须在使用前稀释。稀释后,一个注入瓶(0.45 mL)含有6剂0.3 ml,请参见第4.2和6.6节。一剂(0.3 mL)含有30微克的Tozinameranum,MRNA疫苗针对COVID-19疾病(封装在脂质纳米颗粒中)。Tozinameranum是单线介质(Messenger)RNA(mRNA),在5'端在5'端的帽子在相应的DNA矩阵和编码峰值(S)蛋白SARS-COV-2的体外非细胞转录中产生。辅助物质的完整列表,请参见第6.1节。3。药物形式的注射分散体(无菌浓缩物)。疫苗是白色至几乎白冷冻分散体(pH:6,9-7,9)。4。临床数据4.1治疗指示量30微克/剂量的注射浓缩剂用于主动免疫,以防止12岁及以上的人SARS-COV-2引起的CoVID-19疾病。必须根据官方建议使用该疫苗。建议第二剂在第一次剂量后3周(请参阅第4.4和5.1节)。4.2剂量和给药的剂量和剂量12岁的人和较旧的comirnaty疫苗在稀释后肌肉内施用,作为2剂2剂的初级循环(每个剂量0.3 ml)。在第二次剂量后至少在18岁及以上的个体中,可以至少在肌肉内服用加强剂量(第三剂量)。应考虑到有限的安全性数据,应根据有关疫苗有效性的可用数据进行决定,并向谁提交第三剂量的comirnaty(请参阅第4.4和5.1节)。
16.摘要 人们对将无人机系统 (UAS) 用于商业运营的兴趣日益浓厚。《联邦航空法规》第 14 章 (14 CFR) 第 121 和 135 部分未考虑航空公司使用小型 UAS (sUAS) 的运营,而第 107 部分规定了 sUAS 的最大重量限制。除非直接参与军事行动或获得联邦航空管理局 (FAA) 的豁免,否则不允许超过此重量限制的 UAS 进行民用运营。本文献综述和带注释的参考书目旨在整合和集中值班时间、轮班工作和疲劳文献,以便为航空公司运营中有关 UAS 运营商的未来政策和法规提供信息。它涵盖了 1990 年至 2019 年期间与无人和载人操作相关的值班时间、轮班工作、疲劳和疲劳风险管理方面的一系列文献。还讨论了可能影响操作员疲劳体验的人为因素 (HF) 和人体工程学考虑因素。搜索的文章来自 PsychINFO、Google Scholar 和 FAA 技术图书馆数据库,使用与无人和航空公司运营和疲劳相关的关键字。此外,使用 Google Scholar“引用”功能进行正向搜索有助于确定与该主题相关的其他文献。一百零五篇文章(59 篇文献综述/组织指南,46 项实证研究)讨论了无人和载人操作中的值班时间、轮班工作和疲劳。相关带注释的参考书目将研究文献分为三个主要部分(无人机系统、载人操作和美国军事飞行员执勤时间规定),并附有相关小标题。在载人操作中,执勤时间、轮班工作和疲劳问题已得到广泛研究,但在无人操作中研究较少。UAS 中的执勤时间、轮班工作和疲劳问题主要在军事航空和海上操作中进行研究,而这两类操作之外的研究则更普遍地关注人类如何与无人系统互动。这凸显了在 UAS 操作中进一步研究执勤时间、轮班工作和疲劳的必要性,以及需要进一步考虑 UAS 定义和分类标准以及 UAS 融入国家空域系统 (NAS),以最大限度地降低风险并最大限度地提高人员和财产的运营安全性。此项研究任务与更广泛的研究组合一起提供,以支持 FAA 为制定未来 UAS 航空公司运营中值班时间、轮班工作和疲劳方面的政策和法规所做的努力。
将无人机系统 (UAS) 整合到国家空域系统 (NAS) 需要彻底了解 UAS 操作所需的知识、技能、能力和其他特性 (KSAO)。随着 UAS 操作超出《联邦法规法典》第 14 章 (14 CFR) 第 107 部分的范围,联邦航空管理局 (FAA) 越来越需要标准化飞行员要求、认证要求以及测试和培训要求,特别是对于航空公司和商业运营。第 107 部分未涉及航空公司运营;现有的航空公司规则(见 14 CFR 第 121 和 135 部分)在制定时并未考虑到 UAS。目前,我们对各种 UAS 操作所需的最低知识、技能和测试的理解存在差距,这对 FAA 规则制定构成了挑战。本带注释的参考书目旨在通过基于研究文献的审查记录无人机操作飞行员的知识、技能和测试要求来弥补这一差距。本注释书目将支持 FAA 飞行标准服务通用航空和商业部门 (AFS- 800) 为 UAS 人员上空飞行、扩展飞行和非隔离飞行制定规则,以及航空运输部门 (AFS-200) 为制定 UAS 航空公司监管要求制定规则。文章收集自 Google Scholar 和 FAA Technical L