Droit的交易报告产品是使用其专利熟练平台构建的,为金融机构提供了强大的工具,可用于关键的贸易和交易报告流。其有效的基础架构使客户能够快速准确的决策,以促进实时遵守全球交易报告义务。该平台可以根据完全数字化和自动化的全球法规,市场微观结构和内部政策来评估数千个每秒的交易决策,以消除复杂性,分裂和运营效率低下。Droit的熟练平台由三个元素组成:决策引擎,逻辑查看器和注释者。共同支持共识驱动的监管决策,消除了前台人员单独消化和解释法律的需求。平台的应用程序编程接口(API)可以同时评估24个全球交易透明度和报告制度的报告义务的资格。,在一个或多个制度的贸易中,该平台返回义务的确切细节,例如报告方,时间范围,批准的报告场地,替换的合规性可用性及其他。这种独特的能力将复杂的监管要求编码为智能,可行的决策,使用户能够以完全可追溯且可审计的方式对其报告义务有效响应。使用DROIT的客户可以大大减少随着时间的推移观察到的异常数量,并将重点补救工作集中在来源。使用Adept的公司具有完整的透明度功能,并为在视觉工作流程图中报告义务的决策过程提供了额外的好处,该义务说明了评估的规则和相应的决策。DROIT的交易报告产品可帮助公司的报告架构变得更加健壮,以构建由范围内义务所告知的报告,以确保客户拥有填充的正确字段和价值,并准备在外部发送。
参考文献Alizadeh,Meysam,MaëlKubli,Zeynab Samei,Shirin Dehghani,Juan Diego Bermeo,Maria Korobeynikova和Fab-Rizio Gilardi。2023。“开源大语言模型的表现优于人群工人,并且在文本通知任务中接近chatgpt。” arxiv。https://doi.org/10.48550/arxiv.2307.02179。 Chan,Chung-hong。 2023。 “ grafzahl:来自r内部的文本数据的微调变压器。”计算通信研究5(1):76–84。 https://doi.org/10.5117/ccr2023.1.003.chan。 Gilardi,Fabrizio,Meysam Alizadeh和MaëlKubli。 2023。 “ CHATGPT的表现优于文本通道任务的人群工作。”美国国家科学院论文集120(30)。 https://doi.org/10.1073/pnas.2305016120。 他,Xingwei,Zhenghao Lin,Yeyun Gong,A。LongJin,Hang Zhang,Chen Lin,Jian Jiao,Siu Ming Yiu,Nan Duan和Weizhu Chen。 2023。 “ Annollm:使大型语言模型成为更好的人群注释者。” arxiv。 https://doi.org/10.48550/arxiv.2303.16854。 irugalbandara,Chandra,Ashish Mahendra,Roland Daynauth,Tharuka Kasthuri Arachchige,Krisztian Flautner,Lingjia Tang,Yiping Kang和Jason Mars。 2024。 “用开源SLM在生产中代替专有LLM的权衡分析。” arxiv。 https://doi.org/10.48550/arxiv.2312.14972。 Kalinowski,Tomasz,Kevin Ushey,J。J. Allaire,Yuan Tang,Dirk Eddelbuettel,Bryan Lewis,Sigrid Keydana,Ryan Hafen和Marcus Geelnard。 2024。 网状:接口到“ Python”。 https://cran.r-project.org/package=reticulate。https://doi.org/10.48550/arxiv.2307.02179。Chan,Chung-hong。 2023。 “ grafzahl:来自r内部的文本数据的微调变压器。”计算通信研究5(1):76–84。 https://doi.org/10.5117/ccr2023.1.003.chan。 Gilardi,Fabrizio,Meysam Alizadeh和MaëlKubli。 2023。 “ CHATGPT的表现优于文本通道任务的人群工作。”美国国家科学院论文集120(30)。 https://doi.org/10.1073/pnas.2305016120。 他,Xingwei,Zhenghao Lin,Yeyun Gong,A。LongJin,Hang Zhang,Chen Lin,Jian Jiao,Siu Ming Yiu,Nan Duan和Weizhu Chen。 2023。 “ Annollm:使大型语言模型成为更好的人群注释者。” arxiv。 https://doi.org/10.48550/arxiv.2303.16854。 irugalbandara,Chandra,Ashish Mahendra,Roland Daynauth,Tharuka Kasthuri Arachchige,Krisztian Flautner,Lingjia Tang,Yiping Kang和Jason Mars。 2024。 “用开源SLM在生产中代替专有LLM的权衡分析。” arxiv。 https://doi.org/10.48550/arxiv.2312.14972。 Kalinowski,Tomasz,Kevin Ushey,J。J. Allaire,Yuan Tang,Dirk Eddelbuettel,Bryan Lewis,Sigrid Keydana,Ryan Hafen和Marcus Geelnard。 2024。 网状:接口到“ Python”。 https://cran.r-project.org/package=reticulate。Chan,Chung-hong。2023。“ grafzahl:来自r内部的文本数据的微调变压器。”计算通信研究5(1):76–84。https://doi.org/10.5117/ccr2023.1.003.chan。 Gilardi,Fabrizio,Meysam Alizadeh和MaëlKubli。 2023。 “ CHATGPT的表现优于文本通道任务的人群工作。”美国国家科学院论文集120(30)。 https://doi.org/10.1073/pnas.2305016120。 他,Xingwei,Zhenghao Lin,Yeyun Gong,A。LongJin,Hang Zhang,Chen Lin,Jian Jiao,Siu Ming Yiu,Nan Duan和Weizhu Chen。 2023。 “ Annollm:使大型语言模型成为更好的人群注释者。” arxiv。 https://doi.org/10.48550/arxiv.2303.16854。 irugalbandara,Chandra,Ashish Mahendra,Roland Daynauth,Tharuka Kasthuri Arachchige,Krisztian Flautner,Lingjia Tang,Yiping Kang和Jason Mars。 2024。 “用开源SLM在生产中代替专有LLM的权衡分析。” arxiv。 https://doi.org/10.48550/arxiv.2312.14972。 Kalinowski,Tomasz,Kevin Ushey,J。J. Allaire,Yuan Tang,Dirk Eddelbuettel,Bryan Lewis,Sigrid Keydana,Ryan Hafen和Marcus Geelnard。 2024。 网状:接口到“ Python”。 https://cran.r-project.org/package=reticulate。https://doi.org/10.5117/ccr2023.1.003.chan。Gilardi,Fabrizio,Meysam Alizadeh和MaëlKubli。2023。“ CHATGPT的表现优于文本通道任务的人群工作。”美国国家科学院论文集120(30)。https://doi.org/10.1073/pnas.2305016120。他,Xingwei,Zhenghao Lin,Yeyun Gong,A。LongJin,Hang Zhang,Chen Lin,Jian Jiao,Siu Ming Yiu,Nan Duan和Weizhu Chen。2023。“ Annollm:使大型语言模型成为更好的人群注释者。” arxiv。https://doi.org/10.48550/arxiv.2303.16854。irugalbandara,Chandra,Ashish Mahendra,Roland Daynauth,Tharuka Kasthuri Arachchige,Krisztian Flautner,Lingjia Tang,Yiping Kang和Jason Mars。2024。“用开源SLM在生产中代替专有LLM的权衡分析。” arxiv。https://doi.org/10.48550/arxiv.2312.14972。Kalinowski,Tomasz,Kevin Ushey,J。J. Allaire,Yuan Tang,Dirk Eddelbuettel,Bryan Lewis,Sigrid Keydana,Ryan Hafen和Marcus Geelnard。2024。网状:接口到“ Python”。https://cran.r-project.org/package=reticulate。Kjell,Oscar,Salvatore Giorgi和Andrew H. Schwartz。2023。“文本包:使用自然语言处理和深度学习来分析和可视化人类语言的R包装。”心理方法。https://doi.org/10.1037/met0000542。 Kroon,Anne,Kasper Welbers,Damian Trilling和Wouter Van Atteveldt。 2023。 “为新的媒体效果研究时代推进自动化内容分析:转移学习的关键作用。”通信方法和测量0(0):1–21。 https://doi.org/10.1080/19312458.2023.2261372。 Laurer,Moritz,Wouter Van Atteveldt,Andreu Casas和Kasper Welbers。 2024。 “不太注释,更多的分类:通过深层转移学习和bert-nli解决监督机器学习的数据稀缺问题。”政治分析32(1):84–100。 https://doi.org/10.1017/pan.2023.20。 Spirling,Arthur。 2023。 “为什么开源生成AI模型是科学的道德途径。”自然616(7957):413–13。 https://doi.org/10.1038/d41586-023-01295-4。 Weber,Maximilian和Merle Reichardt。 2023。 “您需要的是 在社会科学中提示生成大语言模型以进行注释任务。 使用开放式模型的底漆。” arxiv https://doi.org/10.48550/arxiv.2401.00284。https://doi.org/10.1037/met0000542。Kroon,Anne,Kasper Welbers,Damian Trilling和Wouter Van Atteveldt。 2023。 “为新的媒体效果研究时代推进自动化内容分析:转移学习的关键作用。”通信方法和测量0(0):1–21。 https://doi.org/10.1080/19312458.2023.2261372。 Laurer,Moritz,Wouter Van Atteveldt,Andreu Casas和Kasper Welbers。 2024。 “不太注释,更多的分类:通过深层转移学习和bert-nli解决监督机器学习的数据稀缺问题。”政治分析32(1):84–100。 https://doi.org/10.1017/pan.2023.20。 Spirling,Arthur。 2023。 “为什么开源生成AI模型是科学的道德途径。”自然616(7957):413–13。 https://doi.org/10.1038/d41586-023-01295-4。 Weber,Maximilian和Merle Reichardt。 2023。 “您需要的是 在社会科学中提示生成大语言模型以进行注释任务。 使用开放式模型的底漆。” arxiv https://doi.org/10.48550/arxiv.2401.00284。Kroon,Anne,Kasper Welbers,Damian Trilling和Wouter Van Atteveldt。2023。“为新的媒体效果研究时代推进自动化内容分析:转移学习的关键作用。”通信方法和测量0(0):1–21。https://doi.org/10.1080/19312458.2023.2261372。 Laurer,Moritz,Wouter Van Atteveldt,Andreu Casas和Kasper Welbers。 2024。 “不太注释,更多的分类:通过深层转移学习和bert-nli解决监督机器学习的数据稀缺问题。”政治分析32(1):84–100。 https://doi.org/10.1017/pan.2023.20。 Spirling,Arthur。 2023。 “为什么开源生成AI模型是科学的道德途径。”自然616(7957):413–13。 https://doi.org/10.1038/d41586-023-01295-4。 Weber,Maximilian和Merle Reichardt。 2023。 “您需要的是 在社会科学中提示生成大语言模型以进行注释任务。 使用开放式模型的底漆。” arxiv https://doi.org/10.48550/arxiv.2401.00284。https://doi.org/10.1080/19312458.2023.2261372。Laurer,Moritz,Wouter Van Atteveldt,Andreu Casas和Kasper Welbers。2024。“不太注释,更多的分类:通过深层转移学习和bert-nli解决监督机器学习的数据稀缺问题。”政治分析32(1):84–100。https://doi.org/10.1017/pan.2023.20。 Spirling,Arthur。 2023。 “为什么开源生成AI模型是科学的道德途径。”自然616(7957):413–13。 https://doi.org/10.1038/d41586-023-01295-4。 Weber,Maximilian和Merle Reichardt。 2023。 “您需要的是 在社会科学中提示生成大语言模型以进行注释任务。 使用开放式模型的底漆。” arxiv https://doi.org/10.48550/arxiv.2401.00284。https://doi.org/10.1017/pan.2023.20。Spirling,Arthur。2023。“为什么开源生成AI模型是科学的道德途径。”自然616(7957):413–13。https://doi.org/10.1038/d41586-023-01295-4。 Weber,Maximilian和Merle Reichardt。 2023。 “您需要的是 在社会科学中提示生成大语言模型以进行注释任务。 使用开放式模型的底漆。” arxiv https://doi.org/10.48550/arxiv.2401.00284。https://doi.org/10.1038/d41586-023-01295-4。Weber,Maximilian和Merle Reichardt。2023。“您需要的是在社会科学中提示生成大语言模型以进行注释任务。使用开放式模型的底漆。” arxivhttps://doi.org/10.48550/arxiv.2401.00284。https://doi.org/10.48550/arxiv.2401.00284。