我们的系统由 White 等人 2 详细描述,并如图 1 所示,类似于许多基于激光泵浦钛宝石的 CPA 系统 3' 5,这些系统目前正在使用或商业化生产。由氩离子激光器 (9 W,所有线) 泵浦的商用锁模钛宝石振荡器产生 82 MHz 的 80-100 fsec 脉冲序列,中心波长为 800 nm (10 nm FWHM 高斯光谱分布)。这些 10-15 nJ 脉冲在单个衍射光栅脉冲展宽器 7 中被时间展宽至约 400 psec。展宽器由 1800 线/毫米镀金全息衍射光栅、60 厘米焦距消色差透镜和平面高反射铝镜组成。在通过该展宽器的八次过程中,实现了正群速度色散以及信号丢失。产生的输出脉冲为 4-5 nJ,用于为再生放大器提供种子。
6.I. Vayshenker、J. C. Bermudez、J. C. Molina、Z. E. Ruiz、D. J. Livigni、X. Li 和 J. H. Lehman,“NIST 和 CENAM 之间的双边光功率计比较”,《NIST 研究杂志》,113,4,1-4,2008 年 7 月至 8 月。7.I. Vayshenker、J. Li、L. M. Xiong、Z. X. Zhang、D. J. Livigni、X. Li 和 J. H. Lehman,“NIST 和 NIM 之间的光纤功率计比较”,《NIST 研究杂志》,115,6,1-4,2010 年 11 月至 12 月。8.D. J. Livigni,“高精度激光功率和能量计校准服务”,NIST 特别出版物 250-62,2003 年。9.N. P. Fox,“陷阱探测器及其特性”,Metrologia 28,197-202,1991 年。10.J. H. Lehman 和 X. Li,“光纤功率计量的传输标准”,Eng.和 Lab.Opt. 中的注释& Phot.News,Vol.10,No.5,1999 年 5 月,存档于 Appl.Opt.第 38 卷,第第 34 页,第7164-7166 页,1999 年。11.J. H. Lehman 和 C. L. Cromer,“用于校准光纤的光阱探测器
导电金属通常会传输或吸收自旋电流。本文报告了将两层金属薄膜连接在一起可以抑制自旋传输和吸收的证据。我们研究了铁磁体/间隔层/铁磁体异质结构中的自旋泵浦,其中间隔层(由金属 Cu 和 Cr 薄膜组成)将铁磁自旋源层和自旋吸收层分隔开。Cu/Cr 间隔层在很大程度上抑制了自旋泵浦,即既不传输也不吸收大量自旋电流,尽管 Cu 或 Cr 单独传输了相当大的自旋电流。Cr 的反铁磁性对于抑制自旋泵浦并不是必不可少的,因为我们观察到 Cu/V 间隔层也有类似的抑制作用,其中 V 是 Cr 的非磁性类似物。我们推测,自旋透明金属的多种组合可能形成抑制自旋泵浦的界面,尽管其潜在机制仍不清楚。我们的工作可能会激发人们对理解和设计金属多层中的自旋传输的新视角。
集成硅光子学凭借其可扩展、高保真度的CMOS制造工艺,以及在标准电信波长下工作的能力,成为量子光子技术的主要候选平台[1,2]。难以区分的相关光子对源是此类平台支持量子网络和信息处理的基本构建模块[1]。当通过自发四波混频 (SFWM) 产生双光子时,最大的挑战是将单光子输出与强的经典泵浦场隔离开来[3]。此前,我们展示了CMOS平台中的第一个光子对源[4],以及第一个在单个芯片上集成SFWM 腔和泵浦抑制滤波器的源[5],无需额外的外部泵浦滤波。该全无源器件采用级联阵列,每个波长间隔开微环 SFWM 源,当出现制造差异时,可确保一个源环与基于微环的高阶泵浦抑制滤波器对齐。然而,这种无源设计阻止将此类集成源的多个副本调整到同一波长。在本文中,我们介绍了一种基于微环的源和基于热可调环的集成泵浦抑制滤波器。这消除了源阵列,将设备占用空间减半,并能够在 CMOS 光子学平台上实现和控制多个此类源之间的量子干涉。该设计还包括一个基于我们的双层单向设计 [ 6 ] 的 1550 nm 新型光栅耦合器设计,模拟了 ∼ 1 dB 的光纤到芯片耦合损耗。源电路[图 4] 。 1 (a)]由一个可调微环谐振器SFWM对发生器腔和一个由四个级联的二阶滤波器形成的可调8极带通滤波器组成,占用460×220μm的整体芯片面积,包括
3 天前 — 主题、规格或标准单位数量执行截止日期|履行地点。06-1-2373-8200-0012-00 ... (4) 防卫省卫生督察、大臣官房、防卫政策局局长、防卫装备局局长(以下简称“有权暂停部长提名的人”)...
(c)浸入量子自旋液体中的磁液滴[15]; (d)磁电材料表面上方的单个电荷,Cr 2 O 3,诱导表面下方的图像单极,然后图像单子在表面上方产生理想的单极磁场[20]。
CoolMode 是 OFS Fitel, LLC 的商标。OFS 保留随时更改本文件中描述的价格和产品的权利,恕不另行通知。本文件仅供参考,不旨在修改或补充任何 OFS 对其任何产品或服务的保证或规格。
报道了一种高度稳定的垂直外腔二极管泵浦无循环液体染料激光器。该设计简单(无需制造工艺步骤,无流体回路)、紧凑(~ cm 大小)且经济高效。报道的光学效率为 18%,M² 为 1,具有出色的光稳定性——在 50 Hz 下 140 万次脉冲后效率没有下降,该值与流动系统相当,远高于有机固态激光器可实现的值。我们表明热效应是该激光器稳定性和动力学的核心。详细研究了不同泵浦脉冲持续时间/重复率的激光建立和关闭动力学;它们表明,随着泵浦脉冲持续时间和重复率的增加,脉冲缩短,这被证明是由于热透镜衍射损耗造成的。这种激光结构为测试或收获可溶液处理的增益材料提供了一个非常方便和简单的平台。
晶体材料、石榴石或掺杂稀土的顺磁玻璃,因此不适合大面积和体积成像。[4] 氮空位 (NV) 中心对磁场具有高灵敏度(单个 NV 中心的灵敏度约为 1 nT Hz −1/2 量级),[5] 但 NV 的光学截面较弱,需要高分辨率检测其发射波长,并且校准困难。[6] 磁成像应用将受益于生物相容性材料(如分子或纳米颗粒)内更强的光磁相互作用,这些材料可以直接掺入样品或生物测定中。[7] 理想情况下,用于磁成像的纳米材料还能够进行高分辨率成像和在高光子通量下操作,甚至可能在微激光器中实现,其明亮的发射和高光谱灵敏度为以细胞分辨率监测各种生理参数创造了新的机会。 [8] 荧光或电致发光材料中的新光磁效应可用于调制激光,甚至可能在光调制器中找到新的应用,而光调制器目前依赖于弱热效应或电光效应。鸟类对地球磁场敏感性的解释为传统磁光材料提供了一种替代品。最近的研究表明,鸟类能够利用其视网膜中电子相互作用的磁敏感性来适应地球磁场。[9,10] 鸟类视网膜中蛋白质的光激发会产生自由基(不成对电子)中间态,然后这些中间态与自旋为 1 的激子(电子-空穴对)相互作用,后者也称为三重态激子。为了解这些相互作用的磁依赖性基础,考虑一个不对称分子,对于该分子,即使在没有磁场的情况下,自旋为 1 的激子的三个三重态也会在能量上分裂。通常,在没有显著的自旋轨道耦合的情况下,这种零场分裂小于约 10 μ eV。[11] 因此,一个数量级为 10 μ eV μ B − 1 ( ≈ 0.2 T) 的外部磁场(其中 μ B 是玻尔磁子)可以通过塞曼效应重新排序三重态,从而调节它们在自旋相关相互作用中的参与。对于没有零场分裂的未配对电子,磁场灵敏度通常更高。因此,三重态-三重态和三重态-电荷相互作用都可以经历磁场调制。鉴于其