补充图4。谐振磁场谐振磁场(μ0H RES)的温度依赖性是从膜(a)31CR和31NCR(C)30 CR和(e)25CR的FMR测量中提取的温度的函数。在硬膜和易于方向μ0h res之间的温度依赖性(b)31CR和31NCR(d)30cr和(f)25Cr之间的μ0h res差异。
这项研究通过研究风,泵送水力(PHS)和太阳能电位,向埃塞俄比亚的Ziway Lake Islanders提供电力。竖起了风桅杆,并在10,50和70m高的高度进行了一年的测量。风是4类,风速为7m/s,在50m和787m/s。能量密度为318.8 kWh/m 2(50m)。基于GIS的3D数字高程模型(DEM)用于研究pHS,湖泊为较低的水库和一个灭绝火山的干燥的火山口池塘,为上储层。使用光学遥感技术,DEM(LIDAR)12.5m提取头部。所考虑的约束是地形,区域,头部和斜率。在50-250,50-200和50-100m的头部范围内确定了十二个上水库。结果显示,可以开发60m头的5976 kWh的pHS容量。太阳能电势为6.1kWh /m 2 /天。这一发现证明了向社区电力供应的生存能力。
本报告是机密的,仅用于解决所有相关规划政策和控制以及适用于Muswellbrook泵送水力储能上层水库地理技术调查的环境问题的目的。根据SMEC Australia Pty Limited(“ SMEC”)和AGL Energy Pty Ltd(“ AGL”)之间的咨询协议提供了本报告,根据该协议,SMEC对此进行了针对AGL的特定和有限的任务。该报告严格限于其中所述的事项,并受到其中的各种假设,资格和限制的约束,并且不适用于其他事项。SMEC不表示本报告中规定的范围,假设,资格和排除条件适合其他目的,也足以满足该报告的内容涵盖您可能将其视为目的的所有事项。
摘要:入侵物种和快速气候变化正在影响新的植物疾病和流行病的控制。要在不断变化的环境状况下有效地管理这些疾病,需要通过整体方法更好地了解病理生理学。多组分方法可以帮助我们了解植物与微生物之间的关系,并为它们如何应对环境压力做出预测模型。OMICS方法的应用可以同时分析植物宿主,土壤和微生物群,从而提供了有关其复杂关系的见解以及植物与微生物相互作用的机制。这可以有助于发展新型策略,以增强植物健康和改善土壤生态系统功能。审查提出了使用OMICS方法来研究植物宿主,土壤和微生物群之间的关系,以开发一种新技术来调节土壤健康。这种方法可以全面了解植物 - 微生物相互作用的机制,并有助于制定有效的植物疾病和改善土壤生态系统功能的策略。总而言之,OMICS技术提供了一种创新和整体的方法,可以理解植物 - 微生物相互作用及其对不断变化的环境条件的反应。
摘要:泵送水力储存(PHS)是一项完善的技术,可在长时间内储存能量。斯里兰卡(Sri Lanka)是一个拥有水力发电资源的国家,具有巨大的PHS开发潜力。该国主要水电厂所在的中央高地,由于其有利的地形,高降雨和大型水库提供了许多合适的PHS开发地点。PHS可以提供可靠的能源,减少该国对化石燃料的依赖,并减轻常规能源的负面影响。尽管具有潜力,但斯里兰卡的PHS发展仍面临着几个挑战,包括高资本成本,征用土地问题和环境问题。本文回顾了斯里兰卡电力部门的当前状态,评估了斯里兰卡的PHS潜力,并检查了斯里兰卡的PHS开发的好处。
摘要 那些希望减少对外国能源的依赖并防止破坏自然的国家正在增加对可再生能源的投资。随着对绿色能源发电的需求不断增加,世界各地的专家都在尝试用更好的方法发电。雨水收集也可以是一种非传统能源,就像风能和太阳能一样。即使是小规模发电,也可以减少对环境有害且成本高昂的能源生产方法。到目前为止,人们已经做出了各种努力来利用雨水发电,雨水是世界上最丰富的资源之一;然而,这可能是最引人注目的研究之一。这项研究的目标是在降雨量大但电力稀少的地区利用雨水发电。就发电量而言,雨滴永远无法与水力发电站竞争。然而,它们有一个显著的优势——它们是免费的。随着能源价格的上涨和新技术的发展,雨能的商业化利用似乎并不遥远。太阳能电池和泵电-雨水系统产生的能量减少了 572 美元的可变电力成本。在研究中以抽水雨水库为代表的能源存储维度中,经济效益潜力非常低。建议尽量减少运营成本,最大限度地提高存储容量和效率,并将填充和卸载时间控制在大约一小时。关键词可再生能源;雨水;抽水蓄能;太阳能光伏;能源存储;优化
摘要:为了将大量可再生能源整合到电网中,必须使用大规模和长时间(4-8 小时以上)的电能存储技术。这种有前途的存储技术是基于布雷顿循环的泵送热电存储。本文的创新之处在于对这种存储技术的两种替代配置进行了技术经济比较。从技术经济的角度研究和比较了基于液体和基于固体的泵送热电存储。评估了工作流体(空气、氮气和氩气)、额定功率和标称容量的成本影响。根据考虑的配置,空气是这两种技术最合适的工作流体,它简化了工厂管理,与氩气相比,成本降低了 1% 至 7%。尽管布局更复杂,热存储材料更昂贵,但基于液体的系统是最便宜的,尤其是对于大型应用而言。这是因为它们的工作压力较低,从而降低了涡轮机和热能存储材料容器的成本。液体系统每千瓦时的成本比固体系统低 50% 至 75%。相反,每千瓦成本使固体系统受益,最高可达 50 MW 的额定功率,而对于更大的额定功率,液体系统的功率转换装置再次更便宜。这是由于涡轮机对总成本的影响。涡轮机约占固体系统总成本的 70%,而液体系统约占 31%。由于与其他部件相比,涡轮机的成本与尺寸的相关性较差,因此固体系统不太适合大型应用。
可再生能源 (RE) 发电厂可以减少因 CO2 排放而破坏环境的化石燃料发电厂的使用。太阳能发电厂 (PLTS) 和风力发电厂 (PLTB) 具有与其性能相关的间歇性特性,受太阳辐射和风速波动等环境条件的影响很大。这会给电力系统的稳定性和可靠性带来问题,从而导致电力系统的利用率不理想。抽水蓄能水电 (PSH) 是一种基于可再生能源的技术,能够在低负荷条件下将多余的能源储存在电力系统中,并在系统处于高峰负荷条件下进行分配。这项研究的目的是确定 PSH 在电力系统中与增加 ET 发电机渗透率之间的关系。本研究采用了 Pastel 和 SWOT(优势劣势机会威胁)分析方法。从讨论结果来看,发现 PSH 技术可以支持印度尼西亚 ET 发电机的普及,尤其是 PLTB 和 PLTS,因为它能够消除电力系统中这些发电机的间歇性。此外,PSH也是一种成熟、规模经济的储能介质,适合在大型复杂电力系统中应用。 PSH的优势在于技术成熟,尤其容量大、经济性好。 PSH 的弱点在于其利用依赖于地点,因为该地区需要有充足的水潜力、丘陵自然条件(海拔)以及相对较大的土地。 PSH提供的机遇是,印尼有许多地区有潜力开发成PSH。此外,使用PSH可以降低生产成本并提高PLTS和PLTB的普及率。 PSH 的威胁是降低存储成本和提高电池性能的趋势。
本报告为美国政府机构赞助工作的记录。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在可再生能源丰富且能量廉价的时期,此抽水式设施将通过将水从一个大坝上升到另一个大坝来工作。为了实现这一目标,在Walpole附近的一个农业物业上建造了两个水坝,一个高高和一个低位,以转移和存储水。所需的大坝面积仅约两个公顷,比该地区的许多大坝小。太阳能电池板和电池将为抽水动作供电并移动水,如果需要,可以自给自足。水被“储存”在更高的大坝中,然后在高需求期间,水通过发电机下坡释放以发电。它的独特之处在于比例比典型的抽水式储能方案要小得多。该设施被称为“迷你水电”,因为它的容量为1.5MW,并且仅需要90米的倾斜或降低,这是世界上同类产品的最小安装。迷你尺寸使技术更加环保,并且可以在更多的位置使用。在西方权力的支持下,PRD将资助和运营Walpole Pumped-Hydro设施。