摘要:在过去的几十年里,相对论极限下的量子资源研究引起了人们的关注,主要是因为观察到自旋动量纠缠不是洛伦兹协变的。在这项工作中,我们将相对论量子信息的研究更进一步,将现实主义的基本问题带入讨论。特别是,我们研究洛伦兹增强是否会影响量子非现实主义——一个与量子力学对某种现实主义概念的违反有关的例子。为此,我们采用了一个相对论粒子穿过马赫-曾德干涉仪的模型作为理论平台。然后,我们比较了从两个相对运动的不同惯性系评估的量子非现实主义。与量子参考系背景下的最新发现一致,我们的结果表明物理现实主义的概念并不是绝对的。
静磁场:磁静力定律、磁感应、磁场中运动的点电荷所受的洛伦兹力、磁场的发散、矢势、电荷守恒和连续性方程、洛伦兹条件、磁场的旋度、安培定律和标量势。
在本文中,我们提出了电磁驱动的微型管理器的计量和控制方法和技术。电磁驱动的悬臂属于微分辨率和质量变化调查的微分辨率机械系统(MEMS)。在所述的实验中,研究了具有综合洛伦兹电流环的硅悬臂。使用经过修改的光束偏转(OBD)系统对电磁驱动的悬臂进行了表征,其架构得到了优化,以提高其分辨率。使用参考悬臂校准OBD系统的灵敏度,其弹簧常数是通过热力学噪声分析进行了干预的。使用优化和校准的OBD系统用于产生电磁扭曲的悬臂的共振和双向静态差异。在理论分析和进一步的实验之后,可以获得等于5.28 mV/nm的设置灵敏度。关键字:光束旋转,热机械噪声,低频噪声,电磁驱动的悬臂,洛伦兹力。
其次,新生儿对环境有害,因为它们直接应用于植物周围的土壤,以便随着它们的生长而吸收。实际上只有约3.5%的农药被植物吸收,其余的杀虫剂被土壤吸收。美国地质调查局的一项研究发现,全国各地有一半以上的溪流中的新污染。neonics会影响神经系统,并被发现会损害产前暴露的儿童的大脑和心脏发育。疾病控制与预防中心(CDC)进行的一项研究发现了50%的人口,儿童浓度最高。这确实令人震惊。我们必须找到更好的方法。
长期以来,计算的理论模型被错误地视为纯数学结构。随着量子计算机的兴起,这种观点完全改变了。这是Deutsch [1]很好地总结的:“计算机是物理对象,···,计算机可以或不能做的是仅由物理定律决定的”。换句话说,不同的物理理论导致具有不同计算能力的不同计算模型。当前,只有两项良好的力学框架,经典力学(包括麦克斯韦方程和一般相对论)和量子力学(包括量子场理论)。,因此,有两种类型的计算机,经典的计算机和量子计算机。自然而然地结合了新型的机械师,并将其用作建立新计算机模型的基础。我们将讨论基于洛伦兹量子力学的计算模型,其中动态演化是复杂的洛伦兹变换。它是在参考文献中提出的。[2]作为Bogoliubov-De Gennes方程的概括; Pauli [3]很久以前研究了类似的机制。具有独立指标的Lorentz Me-Chanics中的关键特征是,只有具有积极规范的状态在物理上才能观察到。我们引入了一些称为双曲线位(或简称Hybit)。如此建立的Lorentz计算机由量子和Hybits组成,这些计算机由一组基本的逻辑门操纵。这些大门的普遍性是严格证明的。构造量子计算机是洛伦兹计算机的特殊情况,因此我们希望洛伦兹计算机更强大。确实是这种情况,因为我们发现了一种比Grover的搜索算法更强大的Lorentz搜索算法[4]。,我们将用带有选择后的光子模拟计算机模型的物理实现,因为单个Lorentz系统进行了模拟[5]。
最近,我们考虑了与石墨相比,石墨烯和氧化石墨烯的拉曼光谱如何出现。在评论中,我们提到了Breit-Wigner-Fano(BWF)线的形状,Ferrari和Robertson,2000年被告知代表碳质材料的G带。BWF是一种用于考虑不对称和FANO共振的修改后的洛伦兹函数(请参阅Miroshnichenko等,2010,介绍Fano理论和模型)。例如,Hasdeo等,2014,使用“石墨烯拉曼光谱中的Breit-Wigner-Fano线形状”,因为“声子光谱与电子孔对激发光谱之间的干扰效果”(Hasdeo等人,2014年,Hasdeo hasde-hole taime coptation Spectra之间)。让我们强调,也可以通过使用分裂的洛伦兹函数来获得不对称性。表征BWF函数的内容是“形状共振”的存在,如Bianconi,2003年的图2所示,或者如其他地方给出的(Tanwar等,2022),抗抗抗耐药性的“蘸酱”。
摘要。普里兹伦是科索沃南部的一个城市,约有 90,000 名居民,土地面积为 640 平方公里。该地区具有独特的地理特征,有利于各种可再生能源的渗透和部署。特别是,太阳能、风能和水力发电潜力被认为是这里最可行的选择。在本研究中,使用计算建模工具评估了这些可再生能源的潜力及其能源生产的可行性。基于 50 年的生命周期项目分析了潜在的投资机会。结果表明,将可再生能源整合到现有的能源系统中将使普里兹伦地区乃至整个科索沃能够应对能源需求的负荷波动。此外,从广义上讲,预计现有能源结构中增加的可再生能源将实现欧盟到 2030 年加速可再生能源渗透的目标,从而减少对环境的温室气体排放。
[𝛥𝛥𝐻𝐻 2 +(𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒 −𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟 ) 2 ] 是具有共振场 𝐻𝐻 𝑟𝑟𝑟𝑟𝑟 的反对称洛伦兹函数,并且