GPS 接收器集成和向后兼容性 GPS 接收器在任何 AJ 解决方案的有效性中都起着至关重要的作用。GSTAR 提供多种集成选项:• 与任何标准 GPS 接收器兼容的 RF 接口 • 与外部数字接收器的数字多波束接口;此选项用于基于 EGI 的平台 专为增长而设计 • 基于 M 代码和 SAASM 的 EGI 兼容 AEU • 用于波束成形的开放数字接口 • 基于 FPGA 的架构可适应未来威胁 • 与主要政府和行业合作伙伴一起推进 AJ-GPS 经过验证的设计 GSTAR 系列产品的变体已成功针对各种威胁场景进行了测试。我们已经在众多模拟领域证明了我们的设计能够抵御威胁,包括赖特帕特森空军基地、天线波前模拟器和霍洛曼空军基地的飞行测试。
C-130XJ 保留了其前代机型的坚固机身,但性能和能力得到了极大改进。新的推进系统提供了更大的航程、更低的油耗和更好的起飞性能。发动机采用电子控制,在海平面温度高达 104°F 时提供最大功率,从而大大提高了在高海拔和高温下的性能。缩短的起飞距离使 C-130XJ 能够在较短的跑道上飞行;更快的爬升速度使其能够更快地达到更安全的高度以避开敌对威胁;更高的巡航上限使其能够在更省油的航线上飞行;更快的巡航速度和更低的油耗使每架飞机每天可以出动更多架次。
“毋庸置疑,一支由不同背景和经验、拥有广泛知识和技能的员工队伍,总是比那些总是寻找具有类似特征的同类员工队伍更能理解客户、拥有更多原创想法和更具创新精神。作为竞争激烈的市场中的全球参与者,多样性和包容性是我们精神和文化的重要组成部分。
开发 C-130J 的基本理念是提供一种经济实惠的选择,使操作员能够用现代化、最新的运输机取代现有的高时间/高运营成本飞机。C-130J 通过两个主要领域的现代化实现了这一目标:推进系统和航空电子设备。新的推进系统大大提高了飞机性能,减少了维护飞机所需的人力。新的航空电子设备大大自动化了飞机操作,从而减少了驾驶飞机所需的人力,也减少了维护人力。虽然洛克希德马丁公司从未设想过每项任务都适合双人驾驶舱,但先进的航空电子设备提供了足够的自动化,使两名飞行员能够在大多数战术和战略任务中舒适安全地操作飞机。
GCU 被引入到洛克希德的 Cl 30H 序列号 LAC 5271 中。它取代了三种现有组件,不仅提供了更好的功率,而且使维护更加容易。服务新闻 V19N2 和 V2ON3 包含描述新 CGU 的许多功能的文章。BSU 首次在 LAC 5310 上投入使用。它旨在解决影响新数字航空电子设备运行的特定问题。在正常运行期间,交流总线会经历短暂的开关瞬变。这些电源波动对真空管时代的航空电子设备影响不大,但模拟单元中不会注意到的中断对于快速反应的数字设计来说似乎是一生。结果可能是错误和内存转储,需要重新启动或重新编程受影响的系统,可能在一次飞行过程中多次。本期详细讨论的 BSU 通过为飞机的航空电子总线提供不间断的交流电来保护这些新系统。
mGCS 是我们的移动地面控制站,建立在我们大型系统数百万小时的遗产之上。它作为无人机操作员的用户界面,用于飞行小型无人驾驶飞行器。mGCS 针对便携性进行了优化,支持触摸屏平板电脑、笔记本电脑或手持控制器。mGCS 具有通用性,可以与多种类型的飞机一起使用,无论是四轴飞行器、固定翼飞机还是其他飞机。mGCS 通过 STANAG 4586 支持互操作性。 无论您拥有一种类型的飞机还是不断发展的机队,mGCS 都将是您需要购买的最后一款 GCS。
有句老话说,事物变化越多,保持不变的事物就越多。我相信,当今一代的设计师和操作员将在他们自己的时代带着会心的微笑回忆起新的 20 兆赫计算机、液晶彩色显示器和误差率低于每小时 3 英里的惯性导航系统的兴奋。如果以常识和良好判断力应用技术,技术就没有界限。未来设计师的唯一限制是自我强加的。我希望我们未来飞机的设计师、操作员和维护人员能够从未来系统的开发中获得与我们许多人从经验、关联和成为我们今天所取得成就的一部分中获得的一样多的满足感。这段旅程值得付出努力。
摘要 猎户座多用途载人飞船是 NASA 人类探索地球以外轨道架构的重要组成部分。洛克希德马丁公司获得了猎户座直至探索任务 2 (EM-2) 的设计、开发、测试和生产合同。此外,洛克希德马丁公司正与 NASA 合作,致力于定义地月试验场任务架构,并探索将火星任务定义为地平线目标,为人类探索太阳系的计划提供意见。2016 年,洛克希德马丁公司提出了一项提案,希望最早在 2028 年发射时实现载人探索火星空间。该提案被称为“火星大本营”,涉及在火星轨道上建立载人航天器,宇航员可以从该航天器前往火卫二和火卫一,还可以对火星表面进行遥控机器人探索,包括取样返回。该概念提出了一种新颖、实用且经济实惠的途径,使人类能够在未来十年探索火星系统。本文将详细介绍火星大本营概念的进一步发展,包括用水生产推进剂、地月试验场任务的更多细节以及火星着陆器概念。轨道大本营可以通过太阳能电解从水中产生氧气和氢气。水可以直接从地球系统提供,也可以通过月球、火星或其他系统的现场资源生产提供。将讨论深空门户火星大本营能力的演示,包括系统、技术和科学任务的可能性。着陆器被设想为一个完全可重复使用的升力体,使用超音速反向推进下降并降落在表面。使用着陆器的初始载人任务将在初始任务之后进行,被概括为相对较短的以科学为重点的探索任务。将探索火星表面的多个区域,目的是从各种感兴趣的地点收集科学数据,并更全面地描述未来永久定居点的可能地点。完成地面任务后,着陆器将作为单级轨道运载火箭返回火星大本营进行加油。有了这些额外的发展,火星大本营概念可以看作是一个核心系统,它将人类带入一个可行、可持续的长期火星探索计划。
第 1 部分 土木工程设计标准 1.1 一般规定 1.1.1 关联和协调 A.本节提供土木工程设计工作的标准。这些设计标准应与洛克希德·马丁导弹与空间 (LMMS) 设施工程标准 (FES)、施工规范、第 I 至 IV 卷以及本设施设计标准的其他相关部分相关联。在适用的情况下,应使用 FES 施工规范中划定的工程施工细节,以兼容 LMMS 现有设施设计。B.土木工程设计工作应按照现行建筑规范研究所 (CSI) 格式指定。C. 设计应与其他相关建筑和工程学科充分协调,以消除冲突和遗漏,并确保满足整个项目要求。与 LMMS 组织和人员合作设计解决方案时必须谨慎判断。D. 所有设计/施工图均应遵循 LMMS 绘图程序和标准,除非本设施设计标准的特定章节另有具体说明。有关所有绘图要求,请参阅第 11 节“绘图程序”。1.1.2 设计理念 设计应以确保花费的成本获得最大收益的方式进行。不得为了节省成本而牺牲安全性和可靠性。分析和设计方法应遵循专业工程实践的既定原则。在设计工作的开发过程中,鼓励进行价值工程。1.1.3 规范和标准 设计工作应符合所有适用的城市、县、州和联邦规范和标准的现行采用版本。此外,下列规范、标准和出版物的现行采用版本被视为本节的指导参考。还应考虑此处未列出的相关贸易和专业协会的适用建议。加州运输部 (CALTrans) 美国州公路和运输官员协会 (AASHTO) 美国混凝土协会 (ACI) 美国钢结构协会 (AISC) 美国钢铁协会 (AISI) 美国国家标准协会 (ANSI)
C-130J 开发背后的基本理念是提供一种经济的选择,让运营商能够用现代化、最新的运输机取代现有的高时间/高运营成本飞机。C-130J 通过两个主要领域的现代化实现了这一目标:推进系统和航空电子设备。新的推进系统大大提高了飞机性能,减少了维护飞机所需的人力。新的航空电子设备大大自动化了飞机操作,从而减少了驾驶飞机所需的人力,也减少了维护人力。虽然洛克希德马丁公司从未设想过每个任务都适合双人驾驶舱,但先进的航空电子设备包提供了足够的自动化,让两名飞行员能够在大多数战术和战略任务中舒适安全地操作飞机。