SaxoCell 在 2023 年至 2024 年期间取得了多项重大成功和里程碑,标志着集群充满活力的增长和创新的一年。我们希望从 2023 年 9 月由 13 位创始成员在莱比锡成立 SaxoCell eV 开始。该协会将帮助我们联系感兴趣的行业合作伙伴和利益相关者,并为集群的可持续发展做出贡献。然后,2024 年初的主要亮点之一是向 BMBF 提交了集群第二轮资助申请。该提案包括对正在进行的项目进行全面重组,并更加关注集群的概况,旨在优化其未来方向并提高整体效率。2024 年 5 月,SaxoCell 在德累斯顿 CRTD 接受了外部专家小组的广泛审查,这是评估项目进展和为未来发展奠定基础的关键一步。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
犬乳腺肿瘤具有作为转化肿瘤学中自然发生的乳腺癌模型的巨大潜力,因为它们与人类乳腺肿瘤具有相同的环境风险因素、关键组织学特征、激素受体表达模式、预后因素和遗传特征。我们旨在开发允许对犬乳腺肿瘤 (CMT) 进行功能分析的体外工具,因为我们对驱动这些异质性肿瘤生长的潜在生物学了解甚少。我们建立了来自 16 名患者的 24 个类器官系的长期培养,包括来自正常乳腺上皮或良性病变的类器官。CMT 类器官重现了它们所来自的原发组织的关键形态学和免疫组织学特征,包括激素受体状态。此外,遗传特征(驱动基因突变、DNA 拷贝数变异和单核苷酸变异)在肿瘤-类器官对中得到保留。我们展示了 CMT 类器官如何成为体外药物测定的合适模型,并可用于研究特定突变是否可预测治疗结果。此外,我们可以对 CMT 类器官进行基因改造,并使用它们进行汇集的 CRISPR/Cas9 筛选,其中文库表示得到准确维护。总之,我们提出了一个强大的 3D 体外临床前模型,可用于转化研究,其中可以从同一患者体内繁殖来自正常、良性和恶性乳腺组织的类器官,以研究肿瘤发生。
这项研究继续对埃塞俄比亚的最佳营养成分和低甲烷(CH 4)生产进行本地可用的反刍动物饲料的体外筛查。在体外研究中获得的最好的BET饲料(以下称为测试饲料)包括尼罗拉(Acacia nilotica),Ziiphus spina-christi和Brewery Evener Green Grains(BSG)的干燥叶片。该研究涉及四种治疗方法:对照,相思,BSG和Ziiphus;每种治疗都提供了相同的粗蛋白,并使用建模和激光CH 4检测器(LMD)估计肠肠排放。该实验被设计为一个随机完整的块,使用初始重量作为21岁cast割的Menz绵羊的阻滞因子。这项研究跨越了90天,在喂养试验一个月后进行了消化率试验。对照组与具有较高摄入量的测试饲料组相比,干物质摄入量(p <0.001)显着(p <0.001),尤其是在Ziiziphus组中。然而,Ziiphus组的CP消化率显着(P <0.01),比其他组低。测试饮食还显着增加了体重增加(p <0.001)。值得注意的是,Ziiphus组在体重变化(BWC),最终体重(FBW)和平均每日增益(ADG)方面表现出卓越的表现。相似的结果。测试饲料组的CH 4发射强度明显低于对照组。对照组排放了808.7和825.3 g Ch 4,而Ziiphus组分别使用建模和LMD方法分别排放了220和265.3 g Ch 4 ADG。这项研究表明LMD可以为绵羊产生生物学上合理的数据。尽管Ziiphus组的样本量较小是对这项研究的限制,但Ziiphus spina-christi和nilotica的叶子粉富含浓缩的单宁(CTS),它们的体重增加和增强的饲料效率可观,从而使这些叶子成为可爱的饲料和可持续的饲料,以供卑鄙的饲料和可持续的饲料。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 21 日发布。;https://doi.org/10.1101/2025.01.21.634116 doi:bioRxiv preprint
1. 意大利帕维亚大学合成生理学实验室 2. 意大利米兰人类科技城 3. 意大利都灵大学“Guido Tarone”分子生物技术中心 * 通讯作者:francesco.pasqualini@unipv.it;moises.disante@unipv.it 摘要 在活细胞成像中测量细胞结构和功能以及细胞周期进程一直很有挑战性,因为荧光泛素细胞周期指示剂 (FUCCI) 和大多数表型传感器都使用绿色 (GFP) 和红色 (RFP) 荧光蛋白。我们介绍了 CALIPERS,一种用于表型分析实验和再生研究的细胞周期感知活细胞成像方法。CALIPERS 使用一种名为 FUCCIplex 的定制 FUCCI 传感器,该传感器与基于 GFP 和 RFP 的传感器进行光谱多路复用。为了证明 CALIPERS 的广泛应用范围,我们用上皮和人类诱导性多能干细胞多色报告基因系在增殖、迁移、心脏药物检测和再生医学研究中对其进行了验证。正文组学和成像技术的融合为基础科学 1,2 、药物检测 3 和再生医学 4 中的细胞表型的高级评估提供了动力。此外,参考人类诱导性多能干细胞 (hiPSC) 和多谱系分化的强大协议(例如心肌细胞、hiPSC-CM)增强了可重复性 5 ,并将表型分析工作扩展到类器官 6,7 和器官芯片 8,9。然而,细胞周期 (CC) 可能会混淆这些研究,因为随着细胞在分裂后生长(G1 期)、复制其 DNA(S)、在随后的分裂前生长(G2)或分裂(M)10 ,基因表达、形态和行为会发生变化。这在分子表型分析中得到了很好的解决,因为由于同时测量许多 CC 基因/蛋白质 11 ,大多数组学研究都具有 CC 感知能力。然而,基于成像的 CC 感知表型分析具有挑战性。通过对 G1/S/G2/M 标记物进行特定染色,可以使化学固定样品的结构表型分析具有 CC 感知能力 12 。然而,功能表型分析只有通过活细胞成像 13,14 才有可能,目前很难使用标准荧光显微镜同时评估 CC 以及细胞结构和功能。事实上,绿色和红色荧光蛋白 (GFP、RFP) 为荧光泛素细胞周期指标 (FUCCI) 10 和大多数表型传感器 15 提供动力。在这里,我们引入了一个可复用的 FUCCI 传感器 FUCCIplex,并展示了 CC 感知实时成像,用于人类上皮细胞(HaCaT,图 1)和 hiPSC(图 2)中的表型分析实验和再生研究(CALIPERS)。为了创建 FUCCIplex,我们将 fastFUCCI 传感器 16 中的 GFP 和 RFP 替换为 miRFP670(iRFP)和 mTurquoise2(CFP)。因此,FUCCIplex 细胞的细胞核在 G1 中包含 CFP,在 G1-S 过渡期包含 CPF 和 iRFP,在 S/G2/M 期仅包含 iRFP(图 1a)。为了展示 CALIPERS,我们在 HaCaT 细胞中共表达了 FUCCIplex 和肌动蛋白结合肽 RFP-LifeAct 17,并使用 40 小时以上的活细胞荧光成像来追踪细胞在每个 CC 期所花费的时间(图 1b 和补充视频 1 和 2)。我们证实 HaCaT 细胞约 40% 的时间处于 G1 期,其余时间处于 S/G2/M 期,这与使用 FUCCIplex 或 DNA 标记在静态图像和流式细胞术实验中测得的 CC 期占有率一致(图 1c-d 和扩展图 1)。此外,我们开发了一个开源插件,可将 CFP 和 iRFP 强度转换为 FUCCIphase 信号,该信号可追踪 CC 完成百分比并实现 CC 感知的形态和运动分析(图 1e、补充视频 3 和扩展图 2)。
九个来源(四个同行评审和五个灰色文献)体现了低水平的参与、代理和自主。这些来源的特点是临时的咨询或顾问机会,而 PWLE 的代理或自主权有限。相比之下,七个来源(一个同行评审和六个灰色文献)通过 PWLE 在委员会、顾问委员会和共同设计项目上的成员资格,展示了中等水平的代理、自主和参与;PWLE 定期提供反馈意见,并为 PWLE 的代理、自主、权威和影响力提供一些机会。最后,九个来源代表了高水平的参与(四个同行评审和五个灰色文献)。这些来源提供了 PWLE 领导或参与领导团队的例子;PWLE 广泛、持续和频繁的参与;生活经验角色被认为等同于非生活经验角色,以及 PWLE 通过多种方式行使代理和自主权——包括选择他们的工作或角色头衔。
了解人类大脑是 21 世纪的主要科学挑战之一。在此背景下,21 世纪初,法国原子能委员会 (CEA) 启动了一项计划,旨在构思和建造第一台以 11.7T 运行的人体 MRI 扫描仪。随后经过十多年的开发,磁体才得以交付,而又花了六年时间才完成调试,并最终获得监管机构的批准,在这种磁场下获取有史以来第一张活体人类大脑图像。我们部署了并行传输工具来缓解射频场不均匀性问题并控制特定吸收率。为了确保在如此高的场强下对人体成像的安全性,我们对志愿者进行了生理、前庭、行为和遗传毒性测量。数据显示没有不良影响的证据。前所未有的
与神经元网络的通信是通往大脑更高世界的大门,而神经电子学可能就是打开这扇大门的钥匙。顾名思义,新术语“神经电子学”被提出来描述与神经元网络无缝接口的电子设备,以实现畅通无阻的双相信息交换。从结构上讲,神经电子器件与脑组织一样柔软,可以最大限度地避免机械失配引起的炎症和损伤。它们与主要侧重于解码和编码电生理序列(例如,单元动作电位和局部场电位)的传统脑机接口技术本质上的区别在于,它们能够解读和传输以复杂的分子结构编译的神经信息
美国食品药品监督管理局 (FDA) 最近批准了 Rebyota ™ 和 Vowst ™,这代表着蓬勃发展的活菌产品领域的里程碑。未来基于微生物的治疗方法也为治疗各种疾病和病症的患者带来了巨大的希望,然而,巨大的障碍阻碍了其开发和应用。最重要的是,现有的活菌生物治疗产品 (LBP) 生产开发的监管框架存在显著差距,需要全面扩展和完善。除了监管挑战之外,在表征 LBP 所必需的分析方法(包括微生物鉴定、效力和生物负载)的优化和验证方面也存在障碍。为了应对这些挑战,微生物组治疗创新小组 (MTIG) 牵头开展合作,与行业领袖和 FDA 进行讨论,旨在促进 LBP 分析的改进并完善当前的监管格局。基于这些讨论的反馈,本综述重点阐述了挑战并识别了关键差距。文中提出了未来监管指南的具体建议,以及开发者现在可以与监管机构进行的互动建议,以支持指南的日趋成熟。文中回顾了LBP开发中需要考虑的关键分析因素,并重点介绍了各种方法的优缺点。在MTIG等联盟的推动下,监管机构、政府机构、产业界和学术界之间的合作将有助于推动基于微生物组的治疗领域进入下一阶段的审批和发展,最终造福患者。