神经科学研究如何在细胞外水平上实施复杂的大脑功能需要体内神经记录界面,包括微电极和读出电路,并且可观察力和空间分辨率增加。神经记录接口的趋势用于采用高通道计数探针或具有密集间隔记录位点的2D微电极阵列,用于记录大型神经元种群,因此很难节省资源。模拟前端的低噪声,低功率要求的规范通常需要大型硅职业,这使问题更具挑战性。减轻该消费区负担的一种常见方法依赖于时间划分多路复用技术,在该技术中,在频道之间部分或完全共享读出的电子设备,同时保留录音的空间和时间分辨率。在这种方法中,共享元素必须在每个通道较短的时间段上操作,因此,在较大的操作频率和信号带宽方面,活动区域被交易。因此,功耗仅受到轻微影响,尽管其他性能指标(例如内噪声或串扰)可能会降低,尤其是在整个读取电路在模拟前端输入中多重的时。在本文中,我们回顾了针对时间划分的多重神经记录系统报告的不同实施替代方案,分析了它们的优势和缺点,并提出了提高性能的策略。
摘要 - SAMM(太阳活动MOF监视器)是一种基于地面的机器人仪器,已开发用于研究和不断监测太阳的磁性,重点是活动区域(ARS)。这些区域的特征是复杂的磁性结构,可能导致爆炸性事件通常与空间环境中大量粒子和物质弹出有关。与地球磁层相互作用时,它们可以对我们的基础设施(卫星,导航系统)和地面(发电厂和电网)中的基础设施构成威胁。基于钠(Na)和钾(K)磁铁光学过滤器(MOFS),SAMM提供了“层析成像”的视图,以在太阳能的不同高度下提供高节奏磁力图和多普勒格拉姆的磁性结构,从而提供了一个独特的数据集高度,从而提供了一个独特的数据集,以推动当前的空间范围的天气范围内的范围较高的空间范围。能够预先预测这些事件(甚至几个小时)是制定缓解策略的基本任务,以减少对地球上重要基础设施的潜在灾难性影响。在这种情况下,SAMM天文台已经意识到可以在全球网络中复制的“节点”,目的是持续覆盖太阳状况。该项目最初是由意大利经济发展部(MISE)在2015年通过软贷款赠款资助的,其发展和运营是在INAF - 罗马与那不勒斯天文学观测站与意大利小型企业(SME)Avalon Instruments的科学合作中进行的。经过三年的发展,SAMM处于调试阶段。在本文中,我们提出了最终的仪器描述以及第一光图像。
科罗拉多州卡森堡 — 卡森堡和第 4 步兵师将于 6 月 29 日下午 4 点至 10 点在铁马公园举办自由节,向公众开放。活动包括适合家庭参加的活动、音乐会和烟火表演。公园入场免费。景点、食品和商品需收费。卡森堡 MWR 将于周六下午 4 点举办一场免费音乐会,拉开活动序幕。娱乐活动由 Exit West 提供。主角是乡村乐队 Parmalee。如需查看完整的活动时间表和常见问题,请访问 https://carson.armymwr.com/freedomfest 停车场位于 Wetzel Avenue 和 Sheridan Avenue 附近。请做好从那里步行前往活动地点的准备。禁止携带宠物(美国残疾人法案服务性动物除外)、玻璃容器和冷藏箱。所有进入卡森堡的人员必须持有有效的州或联邦政府签发的带照片的身份证件。留出额外时间进行随机车辆检查。军犬将在活动区域活动。所有人员必须将车停在指定停车区。在禁止停车区停车将导致开罚单,车辆将被拖走。请按照指定停车区的标志行驶。铁马公园周围地区交通拥堵,司机需减速并注意行人。卡森堡禁止燃放个人烟花。除授权执法人员外,活动现场不允许携带武器。县、州和联邦平民隐蔽携带许可证在卡森堡不被认可或无效。
基于EOM的审查,源本地化过程必须解决前进和反问题(图1)。1,3,5,6)远期问题是当前来源对头皮电势的期望,可以通过准确的头部模型来解决。1,3,5)脑组织的形状和传导分布强烈影响脑电图信号。因此,应使用个性化的MRI来构建确切的头部模型并实现更精确的源定位。4)反问题是指使用头皮电势测量值估算大脑中电流源的精确位置。1)解决此问题的一种方法是使用有关体积导体和发电机解剖结构的合理假设来设定局限性。已经引入了有关反问题的几个建议。1,2,4,5)尤其是作者描述了源分析模型的方法,例如偶极源定位和分布式源定位。从头皮脑电图记录的偶极子源定位可以通过计算当前偶极子的位置,方向和矩参数来估计位置源。4,7)然而,偶极子源定位需要先验假设大脑中的几个活动区域,假定有限数量的等效偶极子,并且可能会因缺失的偶极子而产生偏见。4,5)脑成像方法的最新发展导致了更复杂的选项,可以从头皮EEG信号中定位大脑来源,目前使用了几种分布式源定位方法。4,5,8)4,5)最受欢迎的分布式源模型是最低规范解决方案的修改算法,例如加权最小规范解决方案,低分辨率电磁断层扫描和局部自回旋平均值。
定量相成像(QPI)是一种无标签的计算成像技术,用于各个领域,包括生物学和医学研究。现代QPI系统通常依靠使用迭代算法进行相位检索和图像重建的数字处理。在这里,我们报告了一个衍生光网络,该衍射光网训练,该网络训练了将随机扩散器后面的输入对象的相位信息转换为输出平面处的强度变化,从光学上执行相位恢复和对相位对象的定量成像,完全由未知的随机相位扩散器完全隐藏。此QPI衍射网络由连续的衍射层组成,轴向跨度延伸约70,其中照明波长;与现有的数字图像重建和相位检索方法不同,它形成了一个全光处理器,该处理器不需要超越照明光束的外部功率才能以光传播的速度完成其QPI重建。这个全光衍射的处理器可以通过随机的,未知的扩散器提供低功率,高框架速率和紧凑型替代方案,用于对相对的定量成像,并且可以在电磁频谱的不同部分进行生物医学成像和传感的各种应用。可以将所提供的QPI衍射设计集成到标准CCD/CMOS基于基于CMOS的图像传感器的活动区域,以将现有的光学显微镜转换为衍射QPI显微镜,在芯片上通过无线衍射层内的光衍射进行相位恢复和图像重建。
由建筑师、设计师或工程师准备的四份清晰易读的 24” x 36” 图纸和一份 11” x 17” 缩小版图纸,其中应显示以下内容:1. 申请人姓名和房产地址。2. 附近地图、指北箭头和比例尺。3. “项目摘要”框,包含以下信息:法律描述;评估员的地块编号;站点地址;城市分区;站点面积;地块覆盖率;建筑总建筑面积;按用途划分的活动区域面积(即零售、办公、制造、仓储等);停车位数量;以及不透水表面面积。一般注释(包括本文要求的任何注释)可包含在摘要框中,也可分组放在单独的注释框中。4. 标明角落和尺寸的产权线。5. 地役权和通行权 6. 现有和/或拟议的临街改进。7. 现有和/或拟议的公用设施,包括雨水排放设施。 8. 现有建筑物和结构,包括距离地界 10 英尺以内的相邻地块上的结构。9. 拟建结构,包括与地界的距离。10. 现有和/或拟建的出入口,包括车道和路缘石的尺寸。11. 现有和/或拟建的停车和装卸区,包括停车位数量(包括残疾人停车位)、停车位尺寸、过道宽度等。12. 场地上其他现有和/或拟建的物理改进,如围栏、标志、区域照明、景观美化等。13. 自然特征,如大片树林、溪流、湿地、陡坡等。14. 如果场地不是基本平坦的,则需提供拟建平整的概念规划(可能需要提交单独的表格,显示概念平整和场地地形)。
电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。