摘要 - CB2受体配体活性的准确预测是针对该受体的药物发现的关键,这与炎症,疼痛管理和神经退行性疾病有关。尽管传统的机器学习和深度学习技术已经显示出希望,但其有限的解释性仍然是理性药物设计的重要障碍。在这项工作中,我们介绍了CB2Former,该框架将图形卷积网络(GCN)与变压器体系结构相结合以预测CB2受体配体活动。通过利用变压器的自我发项机制以及GCN的结构学习能力,CB2Former不仅增强了预测性能,而且还提供了对受体活性基础分子特征的见解。我们针对各种基线模型进行基准测试,包括随机森林,支持矢量机,最近的邻居,梯度增强,极端梯度增强,多层感知器,卷积神经网络和重复的神经网络,并以0.685的0.685和0.685和0.67的0.67和0.67 and and and and and and and and and and and and and and and and 0.675,并表现出优势。此外,注意力重量分析揭示了影响CB2受体活动的关键分子子结构,强调了该模型作为可解释的AI的潜力。这种指出关键分子基序的能力可以简化虚拟筛选,指导铅优化和加快治疗性发育。总的来说,我们的结果展示了先进的AI方法(例如CB2Former)在提供准确的预测和可操作的分子见解方面的变革潜力,从而促进了药物发现中的跨学科合作和创新。
花色苷是许多食用植物中包含的水溶性色素。这项研究提供了关于花青素的总体定量文献分析。文献计量数据,该数据产生了44,121个出版物在科学核心收藏中的索引。使用VosViewer软件生成了术语地图,以可视化常见的术语以及其引文数据。自2000年代以来,文献一直在迅速增长,主要由原始文章组成,与评论相比,其比例为13.8:1。最有生产力的作者是波尔图大学的Victor de Freitas教授,而生产力最高的国家是中国和美国。许多出版物发表在食品科学技术和植物科学期刊上。经常提到的化学药品/化学类别包括花青素,类黄酮,氰化素,酚类化合物和多酚。花青素纸的重复食品是葡萄,许多浆果和特定的大米,玉米,土豆和番茄。
lim激酶,limk1和limk2,已成为开发抑制剂的有希望的靶标,并潜在地治疗多种主要疾病。limk在细胞骨架重塑中起着至关重要的作用,作为Rho-GTPase家族的小G蛋白的下游效应子,以及作为肌动蛋白去聚合因子Cofilin的主要调节剂。在本文中,我们描述了新型四氢吡啶吡咯吡汀limk抑制剂的概念,合成和生物学评估。同源性模型首先是为了更好地说明初步化合物的结合模式并解释生物学活性的差异。产生了60多种产品的文库,并在中低纳莫尔范围内测量了体外酶促活性。然后在Cofilin磷酸化Inhi Bition的细胞中评估了最有希望的衍生物,这导致了52的鉴定,该鉴定在激酶选择性面板中对LIMK表现出极好的选择性。我们还证明了52个通过干扰肌动蛋白丝影响细胞细胞骨架。使用该衍生物使用三种不同细胞系的细胞迁移研究对细胞运动表现出显着影响。 最后,解决了与52复合的Limk2的激酶结构域的晶体结构,从而大大改善了我们对52和Limk2活性位点之间相互作用的概念。 报告的数据代表了开发更有效的肢体抑制剂以用于未来体内临床前验证的基础。使用该衍生物使用三种不同细胞系的细胞迁移研究对细胞运动表现出显着影响。最后,解决了与52复合的Limk2的激酶结构域的晶体结构,从而大大改善了我们对52和Limk2活性位点之间相互作用的概念。报告的数据代表了开发更有效的肢体抑制剂以用于未来体内临床前验证的基础。
尽管医学取得了进展,但癌症仍然是一项重大挑战。作为一种全机体疾病,它需要综合的方法和有效的治疗方法。通过抗体靶向疗法、维生素补充剂或支持治疗过程的疫苗来改善现有的抗癌疗法(化疗和放疗)仍然不够。人们正在寻找用于靶向疗法的新分子,以及那些通过间接影响体内信号通路来预防肿瘤疾病发展的分子。本期特刊将根据天然和合成的生物活性化合物,致力于抗癌治疗的新视角。已知分子/化合物/药物用于其他疾病的新用途,例如离子载体抗生素或他汀类药物,也代表了一条相当重要的搜索路径。本期特刊将讨论的主题不仅将关注新的生物活性化合物、现代方法和技术,这些方法和技术可以使抗癌化合物更具生物利用度、更有效、副作用更少,而且还将关注其在动物或人体研究中的特性的验证。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。
本文使用能源系统建模比较了各种灵活性选项,以支持整个能源转型过程中的可再生能源整合。我们分析了新的灵活性资产,例如电力存储、热泵、现有湿式电器的需求侧响应、生活热水电锅炉和配电网扩建,以及电器和建筑改造中的节能措施。我们提出了一个开源部门耦合模型(GRIMSEL-FLEX),以从社会规划者的角度最大限度地降低瑞士电力和住宅供暖供应的能源系统总成本,包括各种类型的消费者和城市环境。我们在各种灵活性选项中找到了相关的反馈机制。首先,电锅炉比湿式电器的需求侧响应具有更大的灵活性潜力,因为到 2050 年,它们可以将存储投资减少 26% 以上(需求侧响应仅为 12%)。其次,如果热泵取代所有化石燃料供暖,则需要多 34% 的电力存储,而要完全取代所有供暖系统,则需要多 80% 的电力存储。第三,我们发现热泵、电锅炉和湿式电器的运行时间从夜间转移到中午,从而导致光伏发电部署规模扩大(住宅部门为 22%–66%)。最后,热泵部署带来的电力存储容量高度依赖于改造率。每年 1% 的改造率可以避免 86% 的存储投资,而每年 2% 的高改造率可以抵消这一投资。
酸)和含有神经蛋白的食欲刺激剂。植物提取物的抗菌活性可能存在于多种不同的成分中[4]。fenugreek(Trigonella foenum-graecum)属于Fabaceae家族,自远古时代以来一直是必不可少的香料[5]。细菌分为革兰氏染色的生物和未染色的生物。容易染色的生物分为四类:革兰氏阳性球菌,革兰氏阴性球,革兰氏阳性杆和革兰氏阴性杆[6,7]。Trigonella feonum-Graecum,通常被称为英格兰的Fenugreek,日本Koroha,India Methi和China Kudu,Fenugreek,fafaceae家族[8]。一年一度的植物,胡芦巴高度为20-60厘米。在长豆荚中成熟的叶子和种子,用于制备用于药用使用的提取物或粉末[9,10]。fenugreek具有改善生物系统健康和功能的许多营养和生物活性化合物。胡芦巴种子具有58%的碳水化合物,23-26%的蛋白质,0.9%的脂肪和25%的纤维。同样,胡芦巴是关键氨基酸的丰富来源,例如天冬氨酸,谷氨酰胺,亮氨酸,酪氨酸和苯丙氨酸[2]。Trigonella feonum-Graecum是记录史上认可的最古老的药用植物之一[11]。仍需要探索体外繁殖植物作为新药来源的潜在用途。基于几项研究性研究,在体内植物中产生的化合物可以在体外种植植物中以相同或不同的水平产生[12]。fenugreek种子具有降血糖和低血糖胆固醇症状,提高边缘葡萄糖消耗,有助于增强葡萄糖的接受度,并在胰岛素受体水平以及胃肠道水平上通过替代品对降糖影响受到降解影响[13];种子还用于治疗胃溃疡,肠炎,尿路感染[14],胡芦巴种子和芽芽剂可与革兰氏阴性菌的变化(例如Escherichia coli和Gram阳性)(例如金黄色葡萄球菌)进行操作[15]。
这项研究研究了使用市售活性炭(AC)同时回收贵金离子。在通过微波辐射增强的封闭批处理反应器中进行吸附,从而产生高压和高温条件。检查了溶液的交流质量,过程,过程,温度,pH和离子强度的影响。高温,高压和微波辐射被证明是化学激活的有效手段,导致了近100%的吸附效率。建议微波辐射显着增加活性碳表面的局部温度,从而改变吸附机理。与没有微波支持的传统批处理反应堆相比,这种增强导致了更高的回收率。结果证明了该方法有效金属回收的重要潜力。
本文提出了一种方法,该方法将建筑物中可用的间接灵活性(电动汽车充电)考虑在内,用于确定固定电池存储系统(直接灵活性)的规模。对来自 Predis-MHI 平台(一个生活实验室)的数据应用了线性规划方法,从而优化了电动汽车的日常充电以及拟议电池的充电和放电计划,同时确定了电池容量。我们的结果表明,基于参考基准情况的自耗百分比增加,与不考虑间接灵活性的方法相比,可以将所需的电池容量减少高达 100%。虽然相关,但本文提出的定型方法假设了最佳的人类行为,这通常很难实现。我们提出的方法可以进行调整并用于确定住宅和商业/公共建筑的直接灵活性。