自然衍生的糖胺聚糖(GAG)的化学修饰扩大了其在软组织修复和再生医学中应用的潜在效用。在这里,我们报告了一种新型的交联硫酸软骨素(〜200至2000千座)的制备,该软骨素既可以溶于水溶液,又可以微过滤。我们将这些材料称为“超级收集”。可以进一步将这些材料与不同的捕获剂结合在一起,以进一步修改聚合物性能并增加新功能。代表性材料(GLX-100)在膀胱炎/膀胱疼痛综合征(IC/BPS)的金标准动物模型中表现出膀胱不渗透性持久性不渗透性。对动物膀胱的组织学检查,该记者认为GLX-100的停留时间优于硫酸软骨素(目前用于IC/BPS患者临床治疗的产物)。正如预期的那样,这种新型的交联插入生物聚合物仅限于膀胱壁的腔表面。在这种交流中,我们描述了一种简单而多功能的综合,用于用于软组织修复的交联糖氨基 - 糖(GAG)生物聚合物。硫酸软骨素(〜12 kD)交联以形成可溶性和可滤物的可溶性聚合物,约200至2000 kD分子量。此处介绍的合成允许控制分子量,同时避免形成扩展的块凝胶。此外,该过程通过选择捕获剂可以进一步对超级捕获的化学修改。已经使用了一组代理商,证明了具有多种功能的超级捕捞家族的准备。我们可以优化聚合物特性,调整对各种组织的粘附,添加记者,并与周围组织的生物化学与肽和其他生物活性剂一起。
乳腺癌 (BC) 是全球女性中最常见的恶性肿瘤。尽管 BC 的治疗方法多种多样,但其结果并不令人满意,尤其是在三阴性乳腺癌 (TNBC) 患者中。高效肿瘤学的主要挑战之一是实现评估肿瘤分子基因型和表型的最佳条件。因此,迫切需要新的治疗策略。动物模型是 BC 的分子和功能表征以及开发靶向 BC 疗法的重要工具。斑马鱼作为一种有前途的筛选模型生物,已广泛应用于患者来源的异种移植 (PDX) 的开发,以发现新的潜在抗肿瘤药物。此外,在斑马鱼胚胎/幼虫中生成 BC 异种移植可以描述肿瘤的生长、细胞侵袭以及肿瘤与宿主体内的系统相互作用,而不会对移植的癌细胞产生免疫原性排斥。有趣的是,斑马鱼可以进行基因操作,其基因组已被完全测序。斑马鱼的遗传学研究描述了与 BC 致癌作用有关的新基因和分子途径。因此,斑马鱼体内模型正在成为转移研究和发现 BC 治疗新活性剂的绝佳替代方案。在此,我们系统地回顾了斑马鱼 BC 模型在致癌作用、转移和药物筛选方面的最新前沿进展。本文旨在回顾斑马鱼 (Danio reiro) 在生物标志物识别和药物靶向的临床前和临床模型中的作用的现状,以及 BC 个性化医疗的发展。
摘要。癌症的发展涉及一种内在机制,包括癌基因激活和肿瘤抑制基因失活,通常是由表观遗传替代驱动的。值得注意的是,这些表观遗传修饰(例如DNA高甲基化)是动态和可逆的,而新兴的研究表明,饮食因素可以影响它们。最近的发现检查了饮食化合物与癌症发展之间的复杂关联,特别关注天然成分影响表观遗传改变的机制。天然化合物因其调节DNA甲基化模式的能力,尤其是在启动子CPG岛上的能力,因此对它们在化学预防和治疗方面的潜力引起了极大的关注。化学疗法和放射疗法是有效的癌症治疗,通常与严重的不良反应有关。因此,越来越多地探索天然物质作为替代性治疗选择。本评论的重点是可以逆转高甲基化的天然化合物,为靶向癌症治疗提供了一种可能更安全的方法。这些生物活性剂在天然化合物中丰富,通过抑制转移,诱导细胞周期停滞并逆转DNA高甲基化来对抗癌症。目前的综述旨在提供进一步的深入机理洞察力,以了解天然化合物,例如染料木黄酮,鉴赏剂,槲皮素和辣椒素在包括乳腺癌,宫颈,宫颈,前列腺和神经细胞瘤在内的各种类型癌症中调节DNA高甲基化的机制。通过在计算机,体外和体内方法中结合,它独特地整合了计算和
摘要。Lingga R,Adibrata S,Roanisca O,Sipriyadi,Wibowo RH,Arsyadi。2023。从细长的cat鱼(Clarias nieuhofii)中分离出的乳酸细菌的益生菌潜力。生物多样性24:4572-4580。益生菌是活产生的微生物或生物活性剂,会对动物消化产生积极影响。他们已经成功地与各种来源隔离了。最近,我们从细长的步行鱼(Clarias nieuhofii valenciennes,1840年)中分离出来并表征了乳酸细菌(LAB)。鱼类样品是从印度尼西亚曼卡岛的Batu Rusa和Paya Benua河中获得的。实验室使用浇注板法从鱼肠中分离出来。然后根据其表型性状,生化特性和16S rRNA基因鉴定对孤立的实验室进行表征。测试所选的分离株以确定其产生乳酸,溶血和抗菌活性以及抗生素耐药性的能力。所有分离株具有具有革兰氏阳性特性的杆状和短杆状细胞的特征。分离株KP1显示浓度为1.85%的种群(2.89 x 107 cfu/ml)和乳酸产生的数量。所有分离株均未表现出溶血活性,并且对抗生素表现出敏感性。十二种乳酸菌形成了针对金黄色葡萄球菌和大肠杆菌的透明区域。从细长的步行鱼中分离出的乳酸细菌表现出潜在的益生菌特征。16S rRNA基因鉴定的结果表明,分别属于kb4,kb7,kb8和kp1分别属于阴道乳酸乳杆菌,发酵乳乳杆菌,发酵乳杆菌和levilactobacillus brevis。
HO Paipa-Álvarez 1、B Medina-Delgado 2 和 W Palacios Alvarado 3 1 创新和生产管理研究小组,弗朗西斯科德保拉桑坦德大学,哥伦比亚圣何塞德库库塔 2 技术、创新和社会研究小组,弗朗西斯科德保拉桑坦德大学,哥伦比亚圣何塞德库库塔 3 生产力和竞争力研究小组,弗朗西斯科德保拉桑坦德大学,哥伦比亚圣何塞德库库塔 电子邮件:wlamyrpalacios@ufps.edu.co 摘要。近年来,流行术语“聚合物-药物偶联物”被用来描述对抗癌症等疾病的新药物靶点。由于其对人类健康具有潜在的益处,这一概念已引起制药行业的关注。这些创新发展涉及材料科学的详细过程,因为需要将不同类型的细胞封装起来,作为材料中的活性成分,将药物或结合物直接释放到肿瘤或受影响的区域。在此背景下,本研究的主要目标是探索聚合物材料在医学和制药科学中的参与状况,并提供一些国家最近的癌症统计数据。从文献综述中可以看出,合成新材料或聚合物缀合物的重要性,因为这些材料最初仅用作药物的储存和输送系统,但如今它们被用作针对癌症等疾病的直接治疗,即作为生物活性剂。最后可以得出结论,目前市场上的共轭聚合物 - 蛋白质或聚合物 - 药物以及其他处于临床研究阶段的材料,这些材料具有生物相容性和生物降解性等物理特性,即与生物体的相容性。
地址:巴西Cascavel,Paraná电子邮件:fabiana.pinto@unioeste.br摘要精油(EOS)已获得了具有治疗潜力的生物活性化合物来源的突出,尤其是在抗药性抗药性方面,抗药性抗药性,全球公共卫生问题,这是一个不断增长的全球公共卫生问题。不当使用常规抗菌药物已经加剧了这个问题,从而越来越紧急寻找有效的天然替代品。在这种情况下,巴西具有广阔的生物多样性,代表着丰富的植物来源,其精油可能具有重要的抗菌特性。肉桂木霉(Cinnamomum amoenum)是肉桂属中的一种物种,以其药理特性(包括抗菌活性)而被认可。这项研究旨在使用气相色谱 - 质谱法(GC-MS)确定AmoEnum C. amoenum的EO的化学组成,并通过肉汤微稀释技术评估其抗菌活性。对Amoenum eo的分析显示了29种化合物,并以桃菌醛(13.88%),十六进制(11.32%)和β-蛋黄蛋白酶(9.32%)为主。EO对所有测试的革兰氏阳性细菌表现出抗菌活性,最小抑制浓度(MIC)范围从7,000 µg/ml到1,750 µg/ml。它还表现出针对肠菌沙门氏菌的杀菌性和抑菌活性,以及针对白色念珠菌的抗真菌活性,以相同的浓度。这些发现表明,肌动蛋白酶的EO是抗菌化合物的有前途的来源,在抵抗抗菌抗性的斗争中脱颖而出。关键词:抗菌活性,多耐病病原体,天然抗菌药物,植物生物活性剂。总结精油已成为具有治疗潜力的生物活性化合物的有前途的来源,尤其是在打击抗菌耐药性时,A
溶解的人乳寡糖(HMO),例如3' - 透明lllactose(3'-sl)和6' - 溶藻(6'-sl),在整个哺乳期中都很丰富,并且比在牛奶或婴儿配方室中的浓度更高。先前的研究表明,溶解的HMO在早期生活中可能具有神经认知益处。最近的研究集中在补充婴儿配方奶粉和生物活性剂中,以缩小配方奶粉和母乳喂养婴儿之间的发育差距。在此,我们研究了补充3'-SL或6'-SL对两个时间点[产后天(PND)33和61]的认知和脑发育的影响。为期两天的小猪(n = 75)被随机分配给无用的商业牛奶替代品,无需或以3'-sl或6'-sl(以粉末状形式添加为0.2673%的粉末状形式,以0.2673%的速度添加)。通过新颖的对象识别评估了认知发展,并且在两个时间点,结果都不显着(p> 0.05)。磁共振成像用于评估结构性大脑的发育。结果在扫描类型,饮食和时间点之间有所不同。观察到饮食的主要作用是白质和其他9个感兴趣区域(ROI)以及PND 30上的PON的相对体积(P <0.05)的主要作用。在PND 58上观察到了类似的影响。扩散张量成像表明PND 30上的差异很小(P> 0.05)。然而,在PND 58(p <0.05)上观察到了扩散结果之间的几种饮食差异,表明饮食对脑微观结构的影响。在任何时间点都从髓磷脂水分成像中观察到最小的饮食差异。总体而言,补充辅酶对学习和记忆没有影响,如新颖的对象识别所评估,但可能会影响大脑发育的时间依赖方面。
*m_correiadasilva@ff.up.pt,erersilva@fc.ul.pt Marine Biofouling是淹没表面上海洋生物耗材的自发和不需要的殖民地,负责对生态和经济影响不利,尤其是在海洋行业部门。当前的防污溶液主要基于有毒和持续的生物活性剂的释放,将其作用扩展到非目标生物群,并导致生态系统的严重副作用。因此,国际法规一直在限制甚至禁止使用有效代理,从而加剧了对环保替代方案的需求。这项工作的目的是探索胆汁酸作为一种具有防染料活性的新型可生物降解支架,并通过化学合成,生产一系列具有不同亲脂性的胆汁酸衍生物,以评估和优化其防污性能。最有希望的胆汁酸是一种从脱氧胆酸获得的合成衍生物,在Mytilus Galloprovincialis幼虫(贻贝幼虫)的抗盐分测定中,在甲氧胆酸中获得3.71μm的EC 50。通过将其在不同的聚合物涂层配方中掺入,即商业有机硅的海洋油漆,进一步评估了该脱氧胆酸对海洋表面保护的防突出潜力[1]。从商业可用且负担得起的原材料中增加了一步合成,该胆汁酸衍生物具有很高的兼容性和具有证明具有抗巨口活动的抗染色涂层的能力。A. R. Neves,J。Almeida和E. R. Silva分别为SFRH/BD/114856/2016,SFRH/BD/99003/2013和SFRH/BPD/88135/2012分别承认FCT。FCT通过UID/MULTI/04046/2019(BIOISI)(BIOISI)和UID/MULTI/04423/2019(CIIMAR)以及欧洲区域发展基金(ERDF)在PT2020和Project Project PTDC/AAG-TEC/0739/MOCT下,对这项工作的认可支持。 (PIDDAC)和欧洲地区发展基金(ERDF)通过竞争(POCI-01-0145-FEDER- 016793)和RIDTI-Project 9471)。参考
肽是小分子(通常不到40个氨基酸),源自自然或合成来源。通过“单珠一式化合物”(OBOC),噬菌体显示或其他筛选,已经鉴定出了几种合成肽在肽库组合后鉴定出来。此外,许多肽是从天然生物活性蛋白(例如生物固化蛋白和转铁蛋白)中得出的。肽由于其药代动力学差而适应结构修饰。因此,在结构 - 活性关系(SAR)亲实现后使用了几种功能分析和基于序列算法的程序(例如BLAST同源性搜索,在Silico Anallys和SRMATLAS)[1-5],已确定并验证了结构 - 活性关系(SAR)对结构的验证(SAR)[1-5]。鉴于靶向肽的天然和人工源,至关重要的是,肿瘤和/或其相关的微环境,包括血管细胞,细胞外基质和免疫细胞和免疫细胞,可访问,特异性和功能性生物标志物,以实现有效的靶向和成像。已通过使用噬菌体显示技术来鉴定出几种肿瘤饲养肽(图1)[6]。除了整联蛋白和其他细胞表面蛋白外,许多细胞内蛋白通常在癌细胞表面高度表达,并且构成了噬菌体显示肽的分子靶标[7-10]。这些肽可以充当载体,可以选择性地递送和特异性成像剂,抗癌毒素,纳米颗粒和/或其他适用于肿瘤的活性剂。是除了肽对其靶标的结合功能(因素效率)外,它还可能显示出其他内在特性,包括细胞毒性活性(治疗性肽)和/或高渗透性(细胞/肿瘤穿透性肽)。由于与全身治疗相关的几个挑战,包括非特定城市,渗透率低,保留率低,脱靶毒性以及脑肿瘤的情况,具有越过血脑内携带者(BBB)(BBB)的能力,有效且有效的策略将不再增加抗抗癌货物的竞争力,而不仅会增加抗药性的药物,并且会增加抗癌的范围。有针对性药物输送的途径。
1。Kumbhani D,BhattD。对西罗莫司洗脱与依依他莫木斯的支架试验的随机评估。ACC。 2019 2。 Feres F,Costa RA,Abizaid A,Leon MB,Marin-Neto JA,Botelho RV等。 Zotarolimus洗脱支架后三个与十二个月的双重抗血小板治疗:优化的随机试验。 JAMA。 2013; 310(23):2510-2522。 3。 Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。 第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。 J Am Coll Cardiol。 2014; 64(20):2086-2097。 4。 Fensterl V,Sen GC。 干扰素和病毒感染。 生物活性剂。 2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。ACC。2019 2。Feres F,Costa RA,Abizaid A,Leon MB,Marin-Neto JA,Botelho RV等。Zotarolimus洗脱支架后三个与十二个月的双重抗血小板治疗:优化的随机试验。JAMA。 2013; 310(23):2510-2522。 3。 Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。 第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。 J Am Coll Cardiol。 2014; 64(20):2086-2097。 4。 Fensterl V,Sen GC。 干扰素和病毒感染。 生物活性剂。 2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。JAMA。2013; 310(23):2510-2522。3。Colombo A,Chieffo A,Frasheri A,Garbo R,Masotti-Centol M,Salvatella N等。第二代药物洗脱支架植入,然后进行6个月的12个月双抗血小板治疗:安全随机临床试验。J Am Coll Cardiol。2014; 64(20):2086-2097。4。Fensterl V,Sen GC。干扰素和病毒感染。生物活性剂。2009; 35(1):14-20。 5。 弗里德曼RM。 干扰素的临床用途。 br J Clin Pharmacol。 2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2009; 35(1):14-20。5。弗里德曼RM。干扰素的临床用途。br J Clin Pharmacol。2008; 65(2):158-162。 6。 George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2008; 65(2):158-162。6。George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。 干扰素的药理学和治疗潜力。 Pharmacol Ther。 2012; 135(1):44-53。 7。 Geraghty RJ,Capes-Davis A,Davis JM。 在生物医学研究中使用细胞系的指南。 br j癌。 2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。George PM,Badiger R,Alazawi W,Foster GR,Mitchell JA。干扰素的药理学和治疗潜力。Pharmacol Ther。2012; 135(1):44-53。7。Geraghty RJ,Capes-Davis A,Davis JM。在生物医学研究中使用细胞系的指南。br j癌。2014; 111(6):1021-1046。 8。 Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。 肠道微生物。 2020; 11(4):771-788。2014; 111(6):1021-1046。8。Gutierrez-Merino J,Isla B,Combes T,Martinez-Estrada F,Maluquer de MotesC。有益细菌通过细胞内胞质传感器的刺激和MAVS激活I型干扰素。肠道微生物。2020; 11(4):771-788。9。Jhuti D,Rawat A,Guo CM,Wilson LA,Mills EJ,Forrest JI。SARS-COV-2的干扰素治疗:挑战和机遇。感染了。2022; 11(3):953-972。10。Kaur G,Dufour JM。 单元线:有价值的工具或无用的文物。 精子发生。 2012; 2(1):1-5。Kaur G,Dufour JM。单元线:有价值的工具或无用的文物。精子发生。2012; 2(1):1-5。