DOI:10.47760/ijpsm.2020.v05i12.008 摘要:近年来,靶向药物输送因其各种优势而受到更多关注。在为靶向药物输送探索的众多途径中。纳米粒子是颗粒分散体或固体粒子,尺寸在 10-1000nm 范围内。药物被溶解、包封、封装或附着在纳米粒子基质上。根据制备方法,可以获得纳米粒子、纳米球或纳米胶囊。设计纳米粒子作为输送系统的主要目标是控制粒度、表面特性和药理活性剂的释放,以便以治疗最佳速率和剂量方案实现药物的位点特异性作用。本综述揭示了几种纳米颗粒药物输送系统的制备、表征和应用方法。关键词:纳米粒子药物输送系统、纳米球、纳米胶囊。引言 1,2,4 纳米粒子被定义为尺寸在 10-1000nm 范围内的颗粒分散体或固体粒子。药物溶解、包封、封装或附着在纳米粒子基质上。根据制备方法,可以获得纳米粒子、纳米球或纳米胶囊。纳米胶囊是药物被限制在由独特聚合物膜包围的腔体中的系统,而纳米球是药物物理上均匀分散的基质系统。近年来,可生物降解的聚合物纳米粒子,尤其是涂有亲水性聚合物(如聚乙二醇 (PEG),又称长循环粒子)的纳米粒子,已被用作潜在的药物输送装置,因为它们能够长时间循环,靶向特定器官,作为基因治疗中的 DNA 载体,并能够输送蛋白质、肽和基因。许多生物材料(主要是聚合物或脂质基)可用于此目的,它们具有广泛的化学多样性和使用纳米粒子进一步改性的潜力。纳米粒子上特别大的表面积为在表面上放置功能基团提供了多种机会。可以通过随温度或 pH 值的变化而膨胀或收缩来创建粒子,或者以特殊方式与抗体相互作用以提供快速的体外医学诊断测试。在将无机材料与聚合物结合以及将不同类别的聚合物结合成纳米粒子形式方面,已经进行了更实用的设计扩展。随着化学、加工技术和分析仪器的最新进展,大量新型聚合物颗粒可以设计成现实。例如,现在我们有空心、多叶、导电、热响应、磁性、
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
绝大多数药物都可以渗透到组织和细胞中,无论其实际治疗需求如何。这会导致副作用,这限制了药物的使用并需要减少治疗剂量。此外,由于细胞的渗透不良,因此无法使用许多潜在的药物,因为它们的电荷或大尺寸限制了它们通过生物膜的穿透。由于这些原因,细胞亚药物的递送成为医疗和药物领域的迅速增长的研究领域。许多生物学活性剂可以转运到特定的细胞室中,以发挥其活性或获得更高的活性。There are drugs, like photosensitizers ( Rosenkranz et al., 2000 ), radionuclides emitting short-range particles ( Sobolev, 2018 ; Rosenkranz et al., 2020 ), anticancer, antimicrobial, and antiviral drugs ( Torchilin, 2014 ), that can exert their maximum effect within a certain compartment.尽管在亚细胞递送方法的发展中取得了长足的进步,但在候补名单上,许多类型的生物活性分子(可能在临床环境中可以利用)。通过制造大分子(如抗体(Slastnikova et al。,2018),适体(Marshall和Wagstaff)或自然调节蛋白等方法的方法吸引了特殊的兴趣。在Kumar及其同事的评论文章中详细讨论了此问题(Kumar等人)。上述所有代理都可以称为本地作用,因为它们的作用或相互作用仅限于特定的亚细胞隔室。他们可能还需要特殊的运送车辆,并且可以用于细胞特异性影响。该研究主题的主要目标是突出显示当前递送车辆将当地作用的药物进入特定细胞的目标隔室。在“药理学前沿”(2018-2019)发表的研究主题“针对抗癌代理的靶向亚细胞递送”(2018-2019)中讨论了该领域的一些成就。本研究主题中介绍了最新的想法和新思想的评论,以展示开发策略以有效地将药物运送到特定的亚细胞部位的策略。细胞内膜传输途径,促进活性分子进入亚细胞位置,对于亚细胞靶向设计至关重要。细胞内靶向分娩的另一项任务是治疗多种疾病,尤其是癌症,是高度特异性分子靶向的设计。DNA适体分子是该领域中快速生长的工具,可用于特定细胞表面靶向,随后的内在化和与细胞内靶标分子(Marshall和Wagstaff)的相互作用。目前,适体在可以广泛地
表面活性剂浓度与样品液滴的直径成正比。29浊度法是快速量化微生物的另一种方法。该方法基于以下理论:在低pH值下脂肽生物表面活性剂的溶解度将降低,并且该方法适合对高浓度脂肽溶液的定量分析。30高性能液相色谱(HPLC)也用于致命蛋白肽生物表面活性剂的定性和定量分析。通常通过紫外检测器分析,但是脂肽的紫外线吸收相对较弱,并且不适合定量分析较低浓度的脂肽溶液。31 - 33当脂肪肽从1-溴乙酰基苯乙烯衍生而来时,可以通过肾上腺探测器对其进行分析。34尽管改进的HPLC方法克服了脂肽溶液的痕量检测的限制,但脂肽的检测极限较低,但衍生过程很复杂,并且准确的定量阳离子范围受到限制。此外,据报道了一种基于可见的颜色shi s筛查表面上产生的新定量方法。35可以通过颜色变化来筛选表面表面菌株的菌株很方便,但是该方法的定量准确性不是很好。还采用了其他方法或技术来估计通过傅立叶变换红外(FT-IR)表格 - 36个溶血活性37或界面张力测试在筛选菌株期间生物表面活性剂的产量。但是,由于过程的复杂性或不方便的校准,这些方法不适用于生物表面活性剂的快速和准确定量。石油扩散技术是定量分析生物表面活性剂含量的好方法。它依靠生物表面活性剂来减少油LM的表面张力,以在油LM的中心形成一个油扩散环,然后根据扩散环的直径来判断生物表面活性剂的含量。但是,传统石油传播技术的不稳定和巨大错误限制了其进一步的应用。不同的分析方法具有其自身的特征,并且这些分析方法的建立使生物表面活性剂的定量分析和越来越完善的表面活性剂量筛选,这也为本文开发提供了理论基础。这项研究旨在修改先前描述的定性石油扩散技术38,以便将其定期应用以量化生物表面活性剂的浓度。它包括(1)通过优化油性材料,图像采集和计算方法来估计修饰的油扩散技术。(2)完全准确的定量阳离子25 - 300毫克每L rhamnolipid标准溶液,5 - 200 mg每L脂蛋白肽标准溶液,以及快速定量单类生物性活性剂溶液。(3)通过建立不同生物表面活性剂标准解决方案的定量标准曲线,比较和分析了改进的技术和传统技术的优势。最后,判断了油样水样中鼠李糖脂和脂肽的含量。结果为研究微生物油位移技术机制提供了一些理论和数据支持。