编辑的书对植物适应非生物胁迫的最新知识进行了有关最新知识的全面更新。它深入探究了ROS和抗氧化剂的代谢,突出了它们在生理,生化和分子过程中的复杂关系。章节关注当前的气候问题以及ROS代谢如何与抗氧化剂系统相互作用以加速排毒机制。这种理解对于寻求开发耐受性作物的农业科学家至关重要,这些农作物在不断变化的环境条件下实现可持续性。非生物压力因素对农作物产量的日益威胁导致人们迫切需要了解其对植物性能的影响以及它们影响植物的机制。显然,这些压力在每个阶段对植物的生长和发育产生负面影响,而过量的ROS产生是这种负面影响的关键因素。但是,植物能够通过诱导抗氧化剂系统作为优先级来应对不利影响。已经确定了ROS的双重作用,以浓度依赖性方式对植物代谢的调节提供了证据。在高ROS产生的条件下,抗氧化剂系统在减少ROS的作用方面起着重要作用。因此,ROS产生和抗氧化剂系统与非生物应力条件交织在一起,抗氧化剂在代谢中保持稳定性,以避免由于环境干扰而破坏。此外,它涉及抗氧化剂和ROS在植物 - 微生物相互作用中的作用。这本书由菲律宾国际赖斯研究所的博士后研究员M. Iqbal R. Khan博士编辑,他发表了35篇经过同行评审的研究文章,并为各种书籍做出了贡献。纳菲斯·A·汗(Nafees A.植物抗氧化系统(AOS)通过抵消反应性物种,尤其是活性氧(ROS)来维持细胞内稳态,在维持细胞内的稳态中起着至关重要的作用。AOS由诸如谷胱甘肽 - 抗坏血酸周期,酚类化合物和亲脂性抗氧化剂(如类胡萝卜素和生育酚)组成。这些成分合作,提供了积极的还原形式的更好的保护和再生,从而使压力的植物能够在H2O2浓度与动物细胞寿命不相容的H2O2浓度下生存。文本参考了有关抗氧化剂,氧化损伤和植物中氧气剥夺应激等主题的各种科学研究和文章。提到了特定机制,例如水 - 水周期和ASC-GSH循环,这些机制有助于植物应对压力。文本还讨论了重金属如何在植物中诱导活性氧(ROS),从而导致植物毒性和物理化学变化。它突出了各种酶和非酶,这些酶有助于植物适应压力条件。作者特别关注基因表达和技术用于研究植物防御的技术。The references cited include studies on various topics, such as: * Antioxidant machinery in crop plants * Phytotoxicity and physicochemical changes in plants exposed to heavy metals * Plant responses to abiotic stresses, including heavy metal-induced oxidative stress and protection by mycorrhization * Plants' oxidative response to nanoplastics * The effect of novel biotechnological vermicompost on tea yield and plant营养含量文本还参考了一些评论文章,包括讨论: *作物植物中非生物胁迫耐受性中的活性氧和抗氧化剂机制 *重金属诱导的活性氧物种:植物毒性和物理化学的植物对植物的氧化作用的氧化作用,这些植物对植物的氧化作用是对本植物的氧化作用,这些植物对植物的氧化量进行了分析:该植物对遗产的含量为小多拟南文。植物具有抗氧化剂系统,可帮助抵消由活性氧(ROS)造成的损害。该系统包括过氧化氢酶和过氧化物酶等酶,以及谷胱甘肽和抗坏血酸等非酶。本书探讨了有效的抗氧化剂系统如何帮助植物耐受诸如干旱和盐度之类的环境压力。它针对植物的生物技术和分子生物学专家,是本科生和研究生的其他阅读材料。Hakeem博士目前是沙特阿拉伯吉达的阿卜杜勒齐兹国王大学的教授。他在印度新德里的贾米亚·哈姆达德(Jamia Hamdard)拥有植物学博士学位,并于2011年完成。Hakeem博士是几个著名的奖学金的接受者,包括伦敦皇家生物学会的奖学金。在2016年加入阿卜杜勒齐兹国王大学之前,哈基姆博士在克什米尔大学担任助理教授,后来在马来西亚大学获得了奖学金。他因其在植物生态生理学,生物技术,分子生物学,药用植物研究和环境研究方面的专业知识而受到认可。除了他的研究工作外,他还广泛出版了,由国际出版商撰写或编辑了70多本书,以及140多个同行评审的期刊文章。他目前在几个高影响力科学期刊的编辑委员会任职。
背景:动物和细胞中活性氧 (ROS) 的产生通常是由于暴露于低强度因素(包括磁场)所致。关于氧化应激的引发以及 ROS 和自由基在磁场影响中的作用的讨论大多集中在自由基诱导的 DNA 损伤上。方法:用分光光度法测定最终溶液中的 DNA 浓度。通过聚合酶链式反应对 8-氧鸟嘌呤 DNA 糖基化酶 (hOGG1) 基因的多态性变体 rs1052133 进行分型。采用酶联免疫吸附测定法测定 DNA 中的 8-氧鸟嘌呤水平。为了处理暴露于交变磁场的样品,作者开发了一种在交变磁场中自动研究生物流体的装置。用分光光度法测定 DNA 水溶液中过氧化氢的含量。结果:实验确定,在低频磁场作用下,水介质中过氧化氢的浓度增加3至5倍,会降低基因组材料对氧化修饰的抵抗力以及DNA中8-氧鸟嘌呤的积累。提出了低频磁场对核酸和蛋白质水溶液作用机理的模型,该模型满足水介质中活性氧物质转化的化学振荡器模型。该模型说明了DNA水溶液中发生的过程的振荡性质,并可以预测生物聚合物水溶液中过氧化氢浓度的变化,这取决于作用的低强度磁场的频率。结论:低强度磁场对生物系统影响的机制中关键因素是化学振荡器水环境中ROS的生成,其中物理和化学过程(电子转移,自由基的衰变和加成反应,自旋磁诱导的转化,最长寿命形式过氧化氢的合成和衰变)的竞争受磁场控制。
2-HG:D-2-羟基戊二酸。4-HNE:4-羟基-2-壬烯醛。4-ONE:4-氧代-2-壬烯醛。BEAS-2B:用 Ad12-SV40 2B 转化的支气管上皮。CAF-1:染色质组装因子-1。CYP2E1:细胞色素 P450 家族 2 亚家族 E 成员 1。DDR:DNA 损伤反应。DSB:双链断裂。EMT:上皮间质转化。ER:雌激素受体。EWS:尤文氏肉瘤。GLO1:乙二醛酶 1。GSH:谷胱甘肽。GSNO:亚硝基谷胱甘肽。HAT:组蛋白乙酰转移酶。HDACi:组蛋白去乙酰化酶抑制剂。HDACs:组蛋白去乙酰化酶。HFD:组蛋白折叠域。 HIRA:组蛋白细胞周期调节剂。HMT:组蛋白甲基转移酶。HUVEC:人脐静脉内膜细胞。IDH:异柠檬酸脱氢酶。IL:白细胞介素。jmjCs:jumonji 蛋白。LOXL2:赖氨酰氧化酶样 2。LSD1:赖氨酸特异性脱甲基酶 1。LTQ:赖氨酸酪氨酸醌结构域。MGO:甲基乙二醛。MnSOD:锰超氧化物歧化酶。MS:质谱法。NAC:n-乙酰半胱氨酸。NSCLC:非小细胞肺癌。ONOO -:过氧亚硝酸盐。oxiPTMs:氧化翻译后修饰。PARP:聚 ADP 核糖聚合酶。PDXs:患者来源的异种移植。PTMs:翻译后修饰。 RNOS:活性氧和活性氮氧化物。ROS:活性氧。SAHF:衰老相关异染色质灶。SAM:S-腺苷甲硫氨酸。SLE:系统性红斑狼疮。TNBC:三阴性乳腺癌细胞。V/ST:伏立诺他/替莫唑胺。α-KG:α-酮戊二酸
姜黄素 (Cur) 是从姜黄 (姜黄) 根茎中分离出来的天然多酚化合物,可作为高效生物活性剂治疗多种疾病,如糖尿病、癌症、关节炎和神经系统疾病 1 (图 1)。Cur 的治疗效果主要归因于其抗炎、抗氧化,尤其是抗致癌活性。Cur 已成功用于预防临床癌症,尤其是乳腺癌。2,3 最近,对晚期和转移性乳腺癌患者进行了一项临床试验研究,以评估 Cur 与紫杉醇联合使用的安全性和有效性。4 事实上,Cur 通过诱导活性氧 (ROS) 的产生和增加癌细胞凋亡来抑制癌细胞的生长。5,6 Cur 表现出很高的安全性
糖尿病的发生率在全球增加。多年负担糖尿病的人经常因高血糖而出现并发症。正在进行越来越多的研究,突出了炎症是疾病进展的重要因素。在各种糖尿病中,高血糖会导致替代性葡萄糖代谢途径的激活,从而导致有问题的副产品,包括活性氧和高级糖基化终产物。本综述研究了三种特定糖尿病并发症的发病机理。视网膜病,肾病和神经病以及当前的治疗选择。通过考虑研究免疫疗法对动物模型相关状况的影响的最新研究论文,提出了多种策略,用于将来治疗和预防糖尿病并发症,重点是与炎症相关的分子靶标。
au:PleaseconfirmthatalleheadinglevelsarerepressedCornected:植物认为存在沉积在叶片上的昆虫卵是迫在眉睫的植物攻击的提示。相应的植物信号事件包括水杨酸的积累和活性氧,转录重编程和细胞死亡。有趣的是,卵诱导的先天免疫显示出与微生物病原体后期触发的免疫反应相似性,近年来,很明显,鸡蛋感知会影响植物 - 微生物的相互作用。在这里,我们重点介绍了有关昆虫卵引起的先天免疫的最新发现以及卵介导的信号如何影响植物 - 微生物相互作用。生态考虑因素提出了一个问题:在这些复杂的相互作用中,谁受益于鸡蛋感知?
背景:氧化应激是一种条件,使生产和消除活性氧(ROS)之间的平衡受到干扰。ROS会对包括DNA在内的各种生物分子造成损害。DNA损伤会损害细胞的功能和存活,并可能有助于白内障的发展。几项实验研究表明,氧化应激通过诱导透镜细胞中的DNA损伤参与白内障的形成。ROS是通过葡萄糖自氧化以及非酶蛋白糖基化在糖尿病组织中产生的。ROS被认为在糖尿病个体的微血管问题的发展中起着重要作用。目标:衡量糖尿病和非糖尿病性白内障患者的总抗氧化能力和丙二醛(MDA)的水平及其之间的比较。
au:PleaseconfirmthatalleheadinglevelsarerepressedCornected:植物认为存在沉积在叶片上的昆虫卵是迫在眉睫的植物攻击的提示。相应的植物信号事件包括水杨酸的积累和活性氧,转录重编程和细胞死亡。有趣的是,卵诱导的先天免疫显示出与微生物病原体后期触发的免疫反应相似性,近年来,很明显,鸡蛋感知会影响植物 - 微生物的相互作用。在这里,我们重点介绍了有关昆虫卵引起的先天免疫的最新发现以及卵介导的信号如何影响植物 - 微生物相互作用。生态考虑因素提出了一个问题:在这些复杂的相互作用中,谁受益于鸡蛋感知?
压力,细胞连接的破坏以及细胞骨架结构的破坏都可以参与此过程。由活性氧介导的凋亡(ROS)可以通过PI3K/AKT/NFKB/MMP-9癌症中的EMT作用[37]。在COPD中,ROS可以促进上皮表型转化,从而导致上皮细胞的异常增殖和分化,从而导致上皮下胶原蛋白沉积[38]。当前的研究观察到CS可以导致肺泡和气道上皮的EMT。cs可以通过Wnt/β-Catenin信号通路促进肺泡上皮细胞中的EMT,从而导致肺泡修复能力受损[39]。COPD始于小气道功能障碍,因此我们的研究着重于COPD中小气道和气道上皮的变化。