ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 消毒剂残留浓度乘以与水接触的时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 五大湖密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时强化地表水处理规则 MCL 最大污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间THM 三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
ANSI/NSF 美国国家标准协会/国家卫生基金会 ASME 美国机械工程师学会 AWWA 美国水务协会 CCP 综合修正程序 CFR 联邦法规 CPE 综合性能评估 CT 残留消毒剂浓度乘以与水接触时间(停留时间) CTA 综合技术援助 D/DBP 消毒剂/消毒副产物 DHS 卫生服务部 EPA 环境保护署 GAC 颗粒活性炭 GIS 地理信息系统 GLUMRB 大湖区密西西比河上游委员会 GREP 一般推荐工程规范 GWR 地下水规则 HAA 卤乙酸 IESWTR 临时加强地表水处理规则 MCL 最高污染物水平 M-DBP 微生物消毒剂/消毒副产物 NODA 数据可用性通知 NSF 国家卫生基金会 O&M 操作和维护 SDWA 安全饮用水法案 SWTR 地表水处理规则 TCR 总大肠菌群规则 TDT 理论停留时间 THM三卤甲烷 TTHM 总三卤甲烷 TNRCC 德克萨斯州自然资源保护委员会 UFTREEO 佛罗里达大学环境职业培训、研究和教育 USGS 美国地质调查局 VOC 挥发性有机污染物 WFI 水设施清单 WHPA 井口保护区
高导电性的金属有机骨架 (MOF) 已被证明是一种令人兴奋的储能设备电极材料。然而,大多数 MOF 表现出低电导率,这限制了它们在超级电容器中的使用。为了解决这个问题,采用一种简单的酸处理方法获得纳米花状镍 2- 甲基咪唑骨架 (Ni-MOF),以在不破坏其骨架的情况下提高电导率。用最佳 pH 值为 2 的硫酸 (H 2 SO 4 ) 溶液处理的样品 (Ni-MOF-2) 表现出改善的表面纹理和优异的电化学特性。Ni-MOF-2 样品在 6 M 氢氧化钾 (KOH) 水性电解质中在 1 A/g 时显示出比其他样品高的 467 C/g 的比容量 (C s )。这主要是由于酸处理后 Ni-MOF-2 中的质子传导增强。此外,还使用电池型 Ni-MOF-2 作为正极,使用富含杂原子的活性炭 (O、N、S@AC) 作为负极,制造了混合超级电容器 (HSC) 装置。制造的 HSC 的最大比容量 (C s ) 为 38 mAh/g,比能量 (E s ) 高达 39 Wh/kg,最大比功率 (P s ) 为 11,079 W/kg。此外,HSC 在 10,000 次连续恒流充电/放电 (GCD) 循环中表现出约 87% 的出色循环稳定性。
研究资格- HDR,材料化学,上阿尔萨斯大学 用于储能和环境的新型碳混合材料的开发 用于气体传感器的金属氧化物半导体薄膜的合成和表征 硕士,可再生能源系统,特兰西瓦尼亚大学,罗马尼亚 三氧化钨的静电喷雾沉积(代尔夫特理工大学,荷兰) 学士,物理学和化学,特兰西瓦尼亚大学,罗马尼亚 从-锂锰氧化物尖晶石中提取锂(苏格拉底-伊拉斯谟奖学金) 研究生涯 2011 年 10 月 - 至今:CNRS 研究员,IS2M,法国米卢斯 用于储能/环境应用的碳混合材料的设计 2008 年 6 月 - 2011 年 9 月:博士后奖学金,IS2M,法国米卢斯 用于锂离子超级电容器的活性炭和石墨电极(ANR HipasCap) 碳刷以及汽车燃油泵收集器(工业项目,Carbone Lorraine) 2018 年:RS2E 科学委员会成员 2017 年:IS2M (UMR 7361 CNRS-UHA) 实验室委员会当选成员 2017 年:《碳研究杂志,C》编委,MDPI 2016 年:IS2M (UMR 7361, CNRS-UHA) 科学委员会成员 奖项
在可持续能源生产和发展的框架中,电能存储 (EES) 是实现这一目标的关键因素。处于能源存储最前沿的是基于电化学存储的系统,例如电池和电化学电容器。多年来,电池和电双层电容器 (EDLC) 的完美组合已经出现,作为抵消这两种技术特定问题的一种方式,并代表了未来 EES 设备达到高能量和功率密度的新方向。作为一种战略性无材料低成本技术,非水混合超级电容器 (KIC) 代表了高功率应用的有前途的解决方案。这里介绍的 KIC 技术由活性炭正极和超大石墨负极组成,浸入乙腈基非水电解质和钾盐中 [1]。该技术发展的主要障碍是结果的不可重复性。对于锂离子电池,化成工艺是关键的制造步骤,可在负极表面形成稳定致密的固体电解质界面 (SEI),确保均匀稳定的性能。此步骤也被认为对 KIC 系统至关重要。得益于适当的化成工艺 [2] 的开发,可以形成均匀连续且 KF 含量低的 SEI,并且软包电池规模的性能现在稳定且可重复。此外,观察到了 SEI 中 KF 含量的变化与循环性能的变化之间的相关性。本文将介绍和讨论这一结果。
保时捷选配代码 – 所有车型 第 1 页 001 Carrera Cup 版(964、993 和 996) 002 RS Touring 版 002 基本型 Carrera RS 003 Group N GT1 Carrera RS 004 Carrera GT/996 GT3RS 005 911 赛车/996 GT3R 007 日本版 993 Carrera RS 008 Boxster 3.2 升发动机 009 Boxster 2.7 升发动机 009 3 速 Sportomatic 变速箱 014 996 运动套件 018 带高架轮毂的运动型方向盘 020 带 2 个刻度 KPH/MPH 的车速表 022 黑色仪表盘和仪表组(997) 023 银色仪表盘和仪表组(997) 024 希腊版 025 黑色仪表盘和秒表(997) 026 活性炭罐 026 银色仪表盘和秒表 (997) 027 加利福尼亚版 029 标准底盘(987 和 997) 030 运动型悬挂组 031 运动型减震器 032 旅行悬挂 033 运动型减震器 033 低底盘车辆(993 和 996) 034 意大利版 036 带冲击吸收器的保险杠 042 Martini Racing 条纹 042 邓禄普 RS 3.8 轮胎 058 带冲击吸收器的保险杠 061 英国版 062 瑞典版 063 卢森堡版 064 荷兰版
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。