结构和工作特性 Pneumax AIRPLUS 空气处理装置的设计和开发旨在提高可靠性、模块化和用户友好的操作和安装。由于具有不同功能和特性的多种模块以及多种材料选择,使 Pneumax AIRPLUS 空气处理装置成为一个坚固、可靠且极其灵活的模块化系统,可适应多种应用。正确组装的 AIRPLUS 装置是模块化的,具有无限的配置和解决方案,能够实现压缩空气处理的所有功能,例如过滤、调节、润滑、拦截和分配。过滤器(包括聚结和活性炭元件以及油分离器)提供足够的介质过滤。调节器或过滤调节器提供精确可靠的压力调节,它们也配有内置压力表或集成数字压力开关。润滑器根据消耗的空气提供油雾润滑,而截止阀可以气动、电动气动或手动操作,将有效管理压缩空气系统的供应和排气。该系列由一系列互补模块组成,例如气动连接旁路、压力开关和渐进启动。完整的组件由通过快速连接法兰连接在一起的各个模块组成,这些法兰提供“即插即用”组件。这提供了快速简便的安装或更换。Pneumax Airplus 空气处理装置可集成符合 EN-ISO 13849-1 和 CE 标志(根据欧盟机械指令附件 V)的安全元件。AIRPLUS 空气处理装置有 4 种不同尺寸,连接尺寸从 1/8“ 到 1”,流量性能高达 8000Nl/min。
Pneumax AIRPLUS 空气处理装置的设计和开发旨在提高可靠性、模块化和用户友好的操作和安装。由于具有不同功能和特性的多种模块以及多种材料选择,Pneumax AIRPLUS 空气处理装置成为一个坚固、可靠且极其灵活的模块化系统,可适应多种应用。正确组装的 AIRPLUS 装置是模块化的,具有无限的配置和解决方案,能够实现压缩空气处理的所有功能,例如过滤、调节、润滑、拦截和分配。过滤器(包括聚结和活性炭元件以及油分离器)可提供足够的介质过滤。调节器或过滤调节器提供精确可靠的压力调节,它们也配有内置压力表或集成数字压力开关。润滑器根据消耗的空气提供油雾润滑,而截止阀可以气动、电动气动或手动操作,将有效管理压缩空气系统的供应和排气。该系列由一系列互补模块组成,例如气动连接旁路、压力开关和渐进启动。完整的组件由通过快速连接法兰连接在一起的各个模块组成,从而提供“即插即用”组件。这提供了快速简便的安装或更换。Pneumax Airplus 空气处理装置可集成符合 EN-ISO 13849-1 和 CE 标志(根据欧盟机械指令附件 V)的安全元件。AIRPLUS 空气处理装置有 4 种不同尺寸,连接尺寸从 1/8“到 1”,流量性能高达 8000Nl/min。
目标受众:急诊医学住院医师、医学生 主要学习目标: 1. 识别慢性阿司匹林 (ASA) 中毒的体征和症状 2. 描述对毒性血清 ASA 水平有效的消除技术 3. 描述碱化尿液的技术 4. 讨论机械通气的潜在并发症 5. 识别 ASA 过量时血液透析的指征 6. 对 ASA 过量安排适当的实验室和放射学研究 次要学习目标:详细的技术/行为目标、教学要点 1. 描述慢性阿司匹林中毒的病理生理学 2. 比较急性和慢性阿司匹林中毒在表现、诊断和治疗方面的异同 3. 讨论阿司匹林中毒患者紧急稳定的管理重点 4. 描述用于最大限度地减少吸收和增强消除有毒阿司匹林摄入的方法。关键行动清单:1. 使用 AC 进行胃部净化 — (可以考虑使用多剂量活性炭。WBI 是可选的。)2. 订购 ASA 水平和基本代谢面板;(然后连续 ASA 水平、K、HCO3、cre)3. 使用 NS 进行容量复苏 4. 碱化尿液并补充钾 5. 咨询毒物中心和肾脏病学以安排透析 6. 考虑机械通气的潜在问题环境:1. 房间设置 — ED 重症监护区
1,2,3-TCP 1,2,3-三氯丙烷法案 城市水资源管理规划法案 ADU 附属住宅单元 AF 英亩英尺 AFY 英亩英尺/年 AMI 先进计量基础设施 AWTF 先进水处理设施 BMP 最佳管理实践 CBI 清洁海滩计划 CIS 沿海截流下水道 CRA 科罗拉多河渡槽 CTC 四氯化碳 DCUs 数据收集器单元 DDW 饮用水部门 DRA 干旱风险评估 DWR 加州水资源部 GAC 颗粒活性炭 GLAC IRWM 大洛杉矶县综合区域水资源管理 GPCD 人均每日加仑数 GPF 每次冲水加仑数 GRRP 地下水补给再利用项目 GSA 地下水可持续发展机构 GSP 地下水可持续发展计划 MAF 百万英亩英尺 MG 百万加仑 MGD 百万加仑/天 MOU 谅解备忘录 MTBE 甲基叔丁基醚 MTUs 仪表传输单位 MWD 南加州都会水务区 NAICS 北美行业分类系统 NRC 国家资源委员会 PCE 四氯乙烯 RHNA 区域住房需求评估 RO 反渗透 SBX7-7 参议院法案 X7-7,2009 年水资源保护法案 SCAG 南加州政府协会 SGMA 可持续地下水管理法案 SMBGSA 圣莫尼卡盆地地下水可持续发展机构
产品名称:生物炭产品识别:来自EBC认证的木屑的生物炭。它的碳含量约为80-90%。产品描述:生物炭是由木屑的热解产生的。热解植物是一种高效的生物量的CHP发电厂,也会产生生物炭。生物炭用于几个不同的应用领域。生物炭在农业中用作土壤添加剂或结构(城市)土壤中的添加剂(例如在植树底物中),其中存储额外的水和养分。生物炭也可以用作混凝土中的添加剂,在该添加剂中,它可以改善混凝土的物理特性,并可以增加电导率作为材料特性。Biochar是一种廉价的替代品或活性炭的前体,因为它可以从水中滤除多种有机和无机污染物。在大多数应用中,生物炭仍保留在使用时未氧化的基质中,并且由于生物炭主要是生物化学惰性的,因此它不会随着时间的推移而降解,这使生物炭成为有效的碳汇。在碳固醇之外,生物炭可以用作冶金过程中化石煤的生物替代品,例如金属矿石还原或钢化石。此生物炭卖给了各种农业,基材生产,混凝土生产,工业和冶金的客户。最终目的地取决于这些应用,但尤其是在土壤和混凝土应用中,创建了永久性的碳水槽。UN CPC代码:345地理范围:欧洲LCA信息
改性石墨烯因其成本效益和机械和电稳定性而得到广泛认可。此外,就石墨烯复合材料的最终产品的稳定性而言,即使在极端条件下,模板也能通过阻止纳米金属从表面移动来稳定催化剂的活性位点。[2,8] 这种材料的其他特性包括重量轻、对任何气体完全不渗透、对高电流密度的极端可持续性(比铜好一百万倍)以及由于结构的长程π共轭而易于化学功能化。理论上,这种共轭的、原子级厚度的六边形堆积结构呈现出 550 Fg −1 的电双层 (EDL) 电容。它们确实提供了很高的比电容,达到 268 F/g,高于活性炭提供的比电容(210 F/g)。 [ 9 ] 石墨烯的蜂窝结构也是构建其他碳同素异形体的基本块。例如,当蜂窝结构堆叠时,它就是石墨。一维纳米管是蜂窝结构的卷绕结构,而零维富勒烯是它的包裹结构。石墨烯的应用非常广泛,例如用于高频晶体管、发光二极管、储能应用、超灵敏测量设备、太阳能电池、燃料电池、废水处理等。石墨烯是下一代纳米电子设备非常有希望的候选材料。[ 10,11,12 ] 与检测光谱宽度有限的半导体不同,石墨烯提供了宽光谱范围和高工作带宽,因此使其适合高速数据通信。由于石墨烯是一种惰性物质,因此可以用作防止水和氧气扩散的腐蚀屏障。石墨烯可以直接在任何金属上生长,这为石墨烯的应用提供了巨大的帮助。[ 9 ]
电子邮件地址:ekpum@delsu.edu.ng 摘要 本文讨论了微电子应用中的热传导。 使用 ANSYS 有限元设计软件设计模型,使用 Design Expert 软件进行响应面法 (RSM) 分析。 分析的成分包括散热器底座 (HSB) 厚度、热界面材料 (TIM) 厚度和芯片厚度。 我们生成了一个实验设计,该实验设计包含 15 个中心复合设计 (CCD),针对这些因素的编码水平(低 (-) 和高 (+))。 将热流施加到芯片,同时将对流系数施加到散热器。 使用温度解来计算 15 次 CCD 实验运行的热阻响应。 RSM 研究的结果提出了 HSB 厚度、TIM 厚度和芯片厚度的最佳(最小化分析)组合分别为 3.5 mm、0.04 mm 和 0.75 mm。而由提出的最佳参数可以实现 0.31052 K/W 的最佳平均热阻。 关键词:RSM;CCD;热阻;温度;微电子学 1. 引言 尽管人们越来越关注微电子设备的热管理,但它仍然是一个挑战。大多数关于微电子设备热量管理的研究都集中在散热器上 [1-4]。然而,了解电子封装中热量的传导和管理方式对于组装过程中使用的组件的开发至关重要。有效散发电子设备热量的方法之一是确保组装过程中使用的组件具有正确的规格和质量。这可以通过确保基于工程规范对所使用的组件进行优化来实现。优化设计规范的方法有很多,但很多研究人员 [5-8] 已经使用响应面法 (RSM) 和其他优化方法来优化不同应用的组件。 Oghenejoboh [9] 采用响应面法分析了西瓜皮活性炭对合成废水中镍(II)离子的生物吸附。研究
理学硕士(环境工程) CV6501 水处理和工艺设计 AUs:3 先决条件:无 第 2 学期 水处理厂的规划和设计。处理过程。离子交换和膜工艺。海水淡化。活性炭吸附。超纯水。CV6502 污染场地评估与修复 AUs:3 先决条件:无 第 2 学期 场地评估和修复问题。场地特征的水文地质和地球化学方面。地下环境中的污染物命运和运输。场地修复实践。补救技术的原理和应用。CV6503 废水处理和工艺设计 AU:3 先决条件:无 第 2 学期 选择和使用废水处理工艺,从而合理设计整个系统。厌氧处理和营养物去除的先进工艺。废水回收和再利用。污泥处理和处置。CV6504 危险废物处理和回收 AU:3 先决条件:无 第 1 学期 定义和立法。废物最小化。处理技术:稳定化、热处理、物理、化学和生物处理。应用。垃圾填埋和补救。CV6505 水质建模 AU:3 先决条件:无 第一学期 水质模型的历史发展。完全和不完全混合系统的基本原理。水生环境的物理方面。河流、河口和湖泊的水质参数建模。CV6511 工业废物管理 AU:3 先决条件:无 第一学期 无 废物来源、特性、产生、收集和监管。源头减少和废物最小化。问题和未来趋势。废物转化和处置技术。当前工业实践:固体、液体和危险废物管理。案例研究。CV6512 综合固体废物管理 AU:3 先决条件:无 第 2 学期 综合固体废物管理和规划。废物产生、特性和数量。减少、再利用和回收。垃圾填埋场:设计、运营、关闭、修复和补救。焚烧:设计、运营、空气排放控制和灰烬处理。生物和化学技术。CV6521 空气质量管理 AU:3 先决条件:无
设施名称:Hanwha Advanced Materials Georgia, Inc. AIRS 编号:015-00153 地点:佐治亚州怀特(巴托县) 申请编号:28817 申请日期:2023 年 4 月 6 日 背景信息 Hanwha Advanced Materials Georgia, Inc.(以下简称“设施”)是计划中的合成小型设施,位于 251 Great Valley Parkway, White, Georgia 30184(巴托县)。巴托县是前亚特兰大臭氧不达标区的一部分,其他所有标准污染物均达标。该设施计划在八条 EVA 薄膜生产线和一条背板生产线上生产乙基醋酸乙烯酯 (EVA) 薄膜和背板。将 EVA 树脂与添加剂和稳定液混合。然后将混合物送入挤出机和 T 模工艺,将物质转化为凝胶,形成所需厚度的 EVA 薄膜。对该薄膜进行退火以释放内部应力。创建表面图案,冷却薄膜,并根据客户要求将薄膜卷成卷。包装该产品并移至仓库。使用多个集尘器来控制装卸和加工操作产生的颗粒物 (PM) 排放。挥发性有机化合物 (VOC) 排放由活性炭 (AC) 塔控制。将粘合剂、固化剂和溶剂混合并涂在第一层薄膜上。然后,该薄膜通过干燥机以去除任何残留溶剂/粘合剂。然后将第二层薄膜涂在该物质上,然后将它们都层压。然后将所得的薄膜混合物重新卷绕并使其固化,以使薄膜之间的粘合剂正常发挥作用。然后,片材通过分切机以根据客户要求生成多张片材并包装储存。混合、涂覆和干燥操作预计会产生 VOC 排放。混合操作预计会产生 PM 排放。VOC 排放将由 AC 塔控制。申请目的 2023年4月6日,该工厂提交了申请编号28817,用于建造和运营EVA薄膜和背板制造厂。
由于人们对便携式能源设备的兴趣日益浓厚,储能变得比以往任何时候都更加重要。二元过渡金属氧化物 (BTMO) 因其出色的结构稳定性、改进的电子电导率和更大的可逆容量而作为潜在的新型储能材料受到了广泛关注。[1] 近年来,人们进行了大量研究来调查和开发柔性储能系统,主要目的是将柔性电子产品应用于柔性显示器、便携式电子产品、电子传感器、电源备份、移动电话、笔记本电脑等设备。现有的可充电储能市场主要由具有高灵活性、高能量密度和高功率密度的电化学储能系统的设计和生产主导。[2] 由于其快速的充放电速率、高功率密度和出色的循环性,超级电容器 (SC) 是各种应用中最有前途且发展最快的存储设备。[3]为了部分替代化石燃料,过去 10 年来,人们付出了巨大努力来利用可再生能源,如热能、太阳能、风能和潮汐能。这些交替可再生能源的广泛使用必须借助强大的储能系统来实现。[4][5][6] 超级电容器因其快速的充电和放电速度、可逆性、安全性、延长的循环寿命、高功率密度和环保性而引起了广泛关注。[7] 超级电容器优于其他储能技术,包括长寿命、快速充电和放电、高功率密度、快速充电存储和高能量密度。这些特性使超级电容器成为燃料电池、传统可充电电池和电容器的补充。[8] 超级电容器类别包括由各种储能技术产生的电双层电容器 (EDLC) 和伪电容器。EDLC 通过电极/电解质界面处的静电吸附/解吸来存储电荷。由于碳纳米管 (CNT)、石墨烯、碳气凝胶和活性炭具有较大的比表面积和优异的导电性,因此经常用于 EDLC。[9]研究人员希望创造具有高功率输出、长寿命和快速充电时间的设备,他们对开发可持续的电化学能量转换和存储解决方案很感兴趣,以满足日常生活中日益增长的电力需求。[10]由于其增强氧化还原化学的能力,BTMO 引起了人们对超级电容器进步的极大兴趣。[3]由于二元金属氧化物具有很高的理论比电容,它们作为超级电容器电极材料受到了广泛关注,例如 ZnFe2O4/rGO 复合材料,[11] NiCo 2 O 4 ,[12] CoV 2 O 6 ,[13] BiVO 4 /PANI 复合材料[14] 和 NiCo 2 S 4 。[15]。与单一过渡金属氧化物相比,BTMO 通常具有更高的比表面积、不同的氧化还原电位和优异的电导率,这些特性有利于实现良好的电化学性能。[16,17,18]。由于其优异的导电性和大的表面积,最近的研究集中在使用二元金属氧化物材料或二元金属氧化物纳米复合材料作为超级电容器应用的电极材料,如图 1 所示。制造二元金属氧化物的方法有很多,包括水热法、溶剂热法、微波辅助法、超声波处理和绿色技术。在这些选项中,大多数用于电容器的 BTMO 或 BTMO 纳米复合材料都是通过化学氧化和热反应过程沉淀制成的。这里我们介绍了用于电化学超级电容器电极的 BTMOs 和 BTMOs 纳米复合材料研究的最新进展。