摘要 磁传感装置是一种非常重要的探测器,有多种重要且有用的应用。几何超常磁阻 (EMR) 是与非磁性半导体-金属混合结构相关的几何类型的磁阻,受几何形状的影响。由于洛伦兹力的作用,半导体-金属混合结构中的电流路径从金属(无磁场)变为半导体(受磁场影响)是 EMR 现象的关键,即一旦将金属置于半导体中,它就会像短路一样工作,大部分施加的电流会流过金属不均匀性,在没有磁场的情况下,半导体-金属混合结构的几乎整个电阻都会下降到小于均质半导体的值;另一方面,施加磁场会改变电流路径,使其围绕金属不均匀性工作,在那里它就像开路一样工作,整个电阻会变成一个相当高的量级,这取决于设备的几何形状。控制这些现象的变量是金属和半导体的电导率、半导体电荷载流子迁移率和设备几何形状。在这篇评论中,概述了 EMR 现象的历史、控制它的变量、材料和 EMR 设备的应用。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护病房 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 室内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以看作是一个概念证明,并适用于任何房间配置。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护室 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 房间内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒内沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以被视为概念证明,并适用于任何房间配置。
水电是可再生能源行业的重要参与者。它不仅是最古老的可再生能源形式,也是最大的可再生能源,占世界总发电量的 17%。这比其他可再生能源的总和还要多。每千瓦时 0.05 美元的成本也是其他可再生能源中最低的 [1]。因此,尽管水电对附近的生态系统和水质有一些环境缺陷,但它是一种经济实惠且可靠的传统化石燃料替代品。在现代,水电可分为三类:水库、河流和抽水蓄能 [2]。无论哪种类型,水电都依靠涡轮机和发电机将水流的动能转化为电能 [3]。水库系统通常以水坝的形式存在,它使用压力水管储存水流并将其重新导向涡轮机。水流过并产生能量后,到达较低的水库。该系统可以控制释放到涡轮机的水量,使能源生产能够适应不断变化的需求 [2]。另一方面,径流式蓄水系统最低限度地储存水并使用压力水管,这意味着释放的水量不受控制。在河流或溪流中,自然的水流会推动涡轮机发电。流经的水在使用后会继续流动。与传统的水库系统相比,该系统产生的电力较少,而且其能源生产也因地点和时间的不同而不一致 [4]。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护室 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 病房内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒内沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以被视为概念验证,并适用于任何房间配置。
精益生产最初是一种通过消除浪费、工人不断改进流程和培养对人的尊重来创造价值的新方法。尽管精益生产在其他行业取得了成功,但航空维修的生产量明显较低、复杂性明显较高以及面向服务的特性要求对精益原则进行重大调整才能有效。由于这两个行业在产品和特性上相互交织,因此缺乏对航空航天生产和航空维修组织采用精益的全面研究,阻碍了转型。航空航天生产中采用精益受到以下因素的阻碍:一是“汽车理念”,二是生产工厂的背景,三是管理层关注短期目标而不是工厂的长期转型。综合产品团队不可或缺,因为它们可以加速开发和生产之间的过渡,最重要的是,弥合生产和维护运营之间的差距。维护、维修和大修组织使用精益技术来降低总体维护成本、缩短飞机周转时间并提高生产率。重点放在优化与产品直接交互的内部区域,例如车间,因为通过将大量计划外维护需求纳入工作计划来优化价值流会极大地影响资源利用率。调查波音、汉莎技术公司和联邦快递的成功案例表明,精益的采用需要所有利益相关者之间的合作:生产、服务、客户和教育。
背景 主动脉瓣狭窄是一种以主动脉瓣膜受限或变窄为特征的疾病,导致瓣膜功能障碍,限制血液从左心室流入主动脉和身体其他部位。如果不及时治疗,这会导致心脏负荷增加,从而导致胸痛、昏厥、呼吸急促和心力衰竭等症状。经导管主动脉瓣置换术 (TAVR) 是一种微创手术,涉及通过导管将新的人工瓣膜置入心脏。这个新瓣膜被部署来替换现有的主动脉瓣膜,在那里它扩张并接管患病瓣膜的功能,从而恢复主动脉的正常血流。问题 植入瓣膜的位置和方向直接影响血流动力学,通过影响瓣膜的流动动力学和压力梯度,从而决定心脏血液排出的效率。流动动力学和由此产生的涡流会影响主动脉壁剪切应力,可能影响植入瓣膜的结构完整性和耐久性。在规划 TAVR 手术时,患者的心脏护理团队面临着考虑多种因素的挑战,包括瓣膜选择、基于主动脉根部几何形状的定位以及优化血流动力学和确保瓣膜的长期耐用性的方向。发明:优势与应用 TAVR-AID 是一个数字孪生管道,可提供患者血流的机械模拟以及人工智能的预测功能。TAVR-AID 被设计为一种介入前决策支持工具,可帮助负责 TAVR 手术的心脏护理团队预测和减轻潜在并发症,优化瓣膜选择和放置,并根据每位患者的独特需求定制 TAVR 手术,从而加强患者护理。
电弧可以定义为气体或蒸汽中两个电极之间的放电,其阴极电压降为气体或蒸汽的最小电离或最小激发电位的量级。电弧是一种自持放电,能够通过提供其自身的机制从负极发射电子来支持大电流。大自然自古以来就以闪电的形式为我们提供了电弧,但直到伏打电堆出现后,汉弗莱·戴维爵士才于 1810 年左右在实验室中首次研究了电弧。电弧可以由火花或辉光放电引发,也可以由两个带电电极之间的接触分离引发。当接触断开时,流过电极的电流会熔化并蒸发最后一个小接触点,留下金属蒸汽放电,如果外部电路的电阻较低,则该放电会发展成电弧。电弧可能存在于高气压或低气压的环境中,也可能只存在于其挥发电极的蒸汽中。大自然似乎从未预料到真空环境中会出现电弧。这是人类的发明。术语“真空弧”是错误的用词。真空弧的真正含义是真空环境中的金属蒸汽电弧。然而,由于真空弧这一术语很常用,并已被文献接受,因此它在这里保留下来,并成为本书的主题。真空弧燃烧在封闭的空间中,在点燃之前是高真空。这种电弧的一个特征是,在点燃后,如果能量密度足够高,它会通过消耗阴极(有时是阳极)产生自己的蒸汽。蒸汽被部分电离,提供导电等离子体以实现电极之间的电流传输。某些基本过程发生在所有类型的电放电中,包括电弧。这些单独的过程自大约 1900 年以来一直在研究。
我们为 Defra 集团在其多元化、具有挑战性和令人兴奋的投资组合中取得的成就感到非常自豪。2023 年 1 月的一项重要成就是发布了环境改善计划 (EIP)。在 25 年环境计划的基础上,将新的法定环境目标纳入法律,该计划阐述了我们将如何与土地所有者、社区和企业合作实现十个目标中的每一个,并制定了衡量进展的长期中期目标。采取这些行动将有助于我们恢复自然、应对环境污染并增加国家的繁荣。英格兰树木行动计划旨在在本届议会结束前将植树率提高到每年 7,500 公顷,并改造林业部门以支持植树。自去年以来,尽管干旱导致条件艰难,使幼树更难生长,但植树率仍增加了 40%,达到 3,128 公顷。泥炭地是物种的重要栖息地,并含有大量碳。今年,自然气候基金提供了超过 3300 万英镑用于恢复 20,000 公顷泥炭地,并通过环境、食品和乡村事务部 (Defra) 的探索基金提供了 500 万英镑用于规划和准备恢复超过 51,000 公顷泥炭地。改善水质对于实现环境、食品和乡村事务部恢复自然和保护英国水域居民的目标至关重要。我们于 2022 年 8 月发布了《暴雨溢流排放减少计划》,其中包括将推动一项雄心勃勃的计划来解决暴雨污水排放问题的目标。到 2035 年,水务公司必须消除 3,000 次暴雨溢流对环境的 70%,这些溢流会影响保护区和沐浴水。到 2040 年,所有排放的 40% 将被消除,到 2050 年,80% 将被消除。
伽玛射线对象:了解伽玛射线与物质的各种相互作用。使用已知能量的伽马射线校准伽马射线闪烁光谱仪,并使用它来测量“未知”伽马射线的能量。使用正电子歼灭辐射来确定电子的质量并观察相关的伽马射线。读数:实验室手册(请参阅补充阅读)“核科学实验” AN34,EG&G ORTEC提供了有关许多本科核试验的背景和技术的精彩动手讨论。所描述的设备类似于实验室中可用的设备。在本文末尾给出了其他读数。设备:NAI:具有集成前置放大器(2),高压电源,堪培拉型号2000电源的TL闪烁体和光电倍增管检测器,NIM BIN,NIM BIN,NIM BIN,CANBERRA 2015A放大器/单通道分析仪模块(2) (PCA-II)CompuAdd 286个人计算机,Analyzer软件,监视器的董事会。背景:在本实验中,您将通过检测腐烂产生的伽马射线来研究核的放射性衰变。γ射线检测是一个多步骤过程:伽马射线进入NAI:TL闪烁体晶体,在其中产生了快速移动的自由电子,进而通过在晶体中行驶时在路径中激发离子而失去能量。这种激发能以各种方式释放出来,其中一种是可见光的发射(荧光)。因此,进入闪烁体的单个高能伽马射线会产生低能光子的闪光。这些光子针对光电倍增管的光敏表面,它们通过光电效应弹出电子。电子被收集在光电培养基中并放大以产生电流脉冲,该脉冲转换为电压脉冲,其高度与光电子的数量成正比,因此与到达管的光子数量成正比,这又与快速电子的初始能量成正比。当放射性源位于闪烁体附近时,光电层流会产生一系列脉冲,每个脉冲对应于单个核的衰变。每个脉冲的幅度与伽马射线释放的电子能量有关。使用单通道分析仪研究这些脉冲。单个通道分析仪(SCA)计数电压脉冲的数量
