近年来,在线性普通微分方程以及线性偏微分方程的量子算法开发中取得了重大进展。在非线性微分方程的量子算法发展中没有类似的进展。在当前工作中,重点放在流体力学中的管理方程式中产生的非线性偏微分方程。首先,讨论了与量子计算背景下与非线性方程相关的关键挑战。然后,作为这项工作的主要贡献,提出了代表Navier中的非线性对流项 - Stokes方程中的量子电路。量子算法在计算基础上引入了使用编码,并基于量子傅立叶变换采用算术。此外,使用浮动点类型数据表示,而不是量子算法中通常使用的定点表示。复杂性分析表明,即使在当前和近期量子计算机上可用的Qubit数量有限(<100)中,非线性产品项也可以很好地计算。对于代表性的示例问题,证明了在浮点量子算术中包括亚正常数的重要性。讨论了将引入算法嵌入到大规模算法中所需的进一步开发步骤。
在海洋工程中,计算流体动力学(CFD)模型对于模拟时间敏感的情况至关重要,例如预测溢油以及在海上进行搜索和救援操作。因此,创建可以有效,准确模拟实时数据的CFD模型至关重要。当前的CFD模型分为两类:慢速且计算上昂贵但准确的细化高保真模型,并且速度快,便宜但通常不准确。为了开发一个平衡计算成本和准确性的模型,我们建议使用稀疏变分高斯工艺进行闭合建模。我们模拟了二维流体流的理想情况,并通过圆柱障碍物越过,并增强了具有三种高保真模型的三种不同离散化的低保真模型。在所有离散化中,我们的增强低保真度模型保留了与高保真模型的高度准确性和相似性,并且与标准的低保真模型相比,误差明显少得多。因此,我们发现高斯过程可以有效地用于闭合流体流量。
验证和确认 (V&V) 是评估计算模拟的准确性和可靠性的主要手段。本文对计算流体力学 (CFD) 中 V&V 的文献进行了广泛的回顾,讨论了评估 V&V 的方法和程序,并对现有想法进行了扩展。对 V&V 术语和方法发展的回顾指出了运筹学、统计学和 CFD 社区成员的贡献。本文讨论了 V&V 的基本问题,例如代码验证与解决方案验证、模型验证与解决方案验证、错误和不确定性的区别、错误和不确定性的概念来源以及验证与预测之间的关系。验证的基本策略是识别和量化计算模型及其解决方案中的错误。在验证活动中,计算解决方案的准确性主要相对于两种类型的高精度解决方案进行衡量:分析解决方案和高精度数值解决方案。本文介绍了确定数值解决方案准确性的方法,并强调了验证活动期间软件测试的重要性。验证的基本策略是
具有空间规则化的电容式微重力流体质量计是一种可安装在推进剂容器上的传感器,可以以可确定的精度确定容器体积内的液体和气体的质量。该传感器由 1) 安装在容器壁内表面上的多个离散电极、2) 信号生成、数字化、信号调节和一般支持(例如电源)电子设备、3) 电极和电子设备之间的电连接以及 4) 用于将一组电容测量值(即电容矩阵)转换为体积分数的算法组成。电子设备生成正弦波并将其施加到单个电极上,然后电子设备测量所有其他电极上的电荷。电容只是电荷除以电压。对所有电极重复此操作,无需重复。对于具有固定体积的容器,只要知道流体成分、温度和压力,就可以使用理想气体定律将体积分数转换为质量分数。
摘要:该技术转让由三角研究研究所 (RTI) 作为 SEMATECH 设施流体项目 (S100) 的一部分准备。它是有关现有设施流体度量和测试方法的信息汇编。有关标准方法的信息来自 SEMATECH 和 SEMI。其他信息来自对期刊和会议论文集的文献检索。已发布的信息主要涉及所使用的测试设备以及发现的检测和纯度水平。许多文章讨论了新设备的使用,无论是商业还是实验。报告附有大量带注释的参考书目。
被执行,并且除了在条件跳转指令执行期间之外,在每个指令周期结束时加一。在步骤 1 期间,控制计数器操作存储器选择电路,并且在步骤 1 结束时,包含下一条指令的指定存储器字被读入静态寄存器。两个左边的位被解码为操作,并且该信息被发送到功能选择电路,在那里,结合步进计数器和时钟信号,生成所有指令所需的门控脉冲。两个右边的位指定操作数地址,被发送到存储器选择电路,允许读出所需的数据字。所有这些都发生在步骤 1 期间。实际的指令执行在最后三个步骤中的一些或全部期间进行。
编辑 Prof. Dr.-Ing. Stefan Hartmann 固体力学分部 应用力学研究所 数学/计算机科学和机械工程学院 克劳斯塔尔理工大学 教授 Dr. rer. nat. Andreas Meister 分析和应用数学工作组 卡塞尔大学数学系 教授 Dr. rer. nat. Michael Schäfer 机械工程数值方法研究所 达姆施塔特工业大学机械工程系 教授 Dr. rer. nat. Stefan Turek 应用数学研究所 多特蒙德工业大学数学学院 德国国家图书馆发布的书目信息 德国国家图书馆将此出版物列在德国国家书目中;详细的书目数据可在互联网上查阅,网址为 http://dnb.d-nb.de。 ISBN 印刷版:978-3-89958-666-4 ISBN 在线版:978-3-89958-667-1 URN:urn:nbn:de:0002-6673 © 2009,卡塞尔大学出版社有限公司,卡塞尔 www.upress.uni-kassel.de 封面布局:Jörg Batschi Grafik Design,卡塞尔 印刷:docupoint,马格德堡 德国印刷
当今民用运输飞机的高升力系统由使用阀控固定排量液压马达的动力控制单元 (PCU) 驱动。图 9 显示了带有 PCU 的传统高升力传动系统的典型后缘(襟翼)。由于可靠性原因,PCU 由两个独立的液压执行回路驱动。两个液压马达的速度由差速齿轮 (DG) 相加。如果单个液压系统发生故障,高升力系统可以半速运行。整个传动系统的位置通过释放压力制动器 (POB) 来设置。使用 VDHM 驱动的 PCU 可实现平稳的启动和定位序列。此外,它还可以对高升力系统进行稳定的位置控制。(1)、(2)
描述了蒂特斯勒和桑德霍尔策在1936年提出并证明了使用半固体培养基来验证细菌的动力。在1967年,Le Minor解决了此问题,并将少量硝酸钾添加到培养基中,该培养基抑制了发酵气体的产生,同时允许验证硝酸盐的还原。与三糖琼脂一起使用时,这种液体运动性,甘露醇和硝酸盐培养基可以在乳糖阴性肠杆菌和非临床样品中的非发酵革兰氏阴性杆菌之间快速分化。技术通过将播种针驱动到管的底部并在36±1°C孵育20-24小时来接种培养基。孵育后,通过在培养基表面上沉积4-6滴磺胺酸,然后进行等量等量的α-萘基胺,进行硝酸盐测试。亮红色环的出现表明硝酸盐还原为亚硝酸盐的阳性测试。如果不发生颜色,则应添加一点锌粉。如果当时出现红色,则表明存在硝酸盐而不减少的硝酸盐,相反,如果红色继续而没有发生,则硝酸盐的总还原为氮。介质从红色变为黄色的颜色变化表示甘露醇的发酵。